
JUNE 1995 Delphi INFORMANT ▲ 1

ON THE COVER

8 OOP for the Uninitiated — Mark Ostroff
For many developers, Delphi is their first object-oriented
programming environment. Mr Ostroff gets them on the
right path with his introduction to OOP — the principles,
the terminology, and the myths.

17 The Triumph of Objects — Zack Urlocker
Objects are now the lingua franca of programming. But it
wasn’t always this way! Mr Urlocker offers his perspective
as Delphi Group Product Manager and reminisces about
his first experience with OOP.

FEATURES

19 Informant Spotlight — Brian Johnson
It’s no secret that many programmers are leaving Visual
Basic to begin new development projects in Delphi. Mr
Johnson offers ten ideas — from declaring variables to
getting help — to make the migration easier.

23 The Way of Delphi — Gary Entsminger
Mr Entsminger introduces Delphi exception handling,
explains the try...except and try...finally Object Pascal
constructs, and offers us a gem of a component for
trapping run-time errors gracefully.

29 DBNavigator — Cary Jensen, Ph.D.
Whether you’re working with Table or Query components,
the TField object and its children are an integral part of
Delphi database programming. As Dr Jensen points out,
it’s not always what you see that counts!

33 From the Palette — Jim Allen & Steve Teixeira
Misters Allen and Teixeira offer up a 3-D Label component
that’s sure to come in handy. Along the way, they just
happen to demonstrate overriding a constructor, inheriting
properties, the Paint method, and much more.

40 At Your Fingertips — David Rippy
It’s more slick info from master-tipster Rippy! This
month’s bunch includes a one-statement incremental
search, controlling DBGrid columns, and keeping your
Windows color palettes from hurting each other.

REVIEWS

42 Conversion Assistant
Product review by Gary Entsminger

46 Delphi Programming for Dummies
Book review by Jerry Coffey

47 Design Patterns
Book review by Richard Curzon

DEPARTMENTS

2 Editorial
3 Delphi Tools
5 Newsline

June 1995 - Volume 1, Number 2

What’s Bred in the Bone
Delphi and Object-Oriented Programming

Cover Art By: Victor Kongkadee

What’s bred in the bone will not out of the flesh.
English proverb from the Latin — 1290
Okay, I should have done this last issue. We’ve received many comments about our lack of an editorial
page, so here goes. Frankly, I didn’t want to burn a page with a-word-from-the-editor, but it’s great

that you’re interested in our plans for the magazine. This month’s cover topic is object-oriented program-
ming. A real stretch hunh? Which brings me to the “What’s bred ...” quotation. Besides being a paean to
good (and bad) breeding, the proverb applies remarkably well to Delphi’s incorporation of OO principles.
Delphi is object-oriented to the bone, so all Delphi programming is object-oriented programming.
— Jerry Coffey, Editor-in-Chief
We begin with an introduction to OOP by
Mark Ostroff. Mark does a great job of
putting a new spin on the topic with some
novel hardware analogies — and of dis-
pelling some widely held OOP myths.
Next, Delphi product manager Zack
Urlocker shares some of the thinking that
went into the development of Borland’s new
product and how it’s intended to be used.

If I had a dollar for every time I’ve heard
“I’m a Visual Basic developer, but ...” I’d
probably be in Bangkok or Madras or
Delphi instead of writing this. For those
of you making the VB-to-Delphi hop,
Brian Johnson offers 10 pointers for mak-
ing the transition easier. And speaking of
VB, renowned VB master and OOP spe-
cialist Gary Entsminger has come up with
the cool idea of an exception-handling
component. It’s all in this month’s “The
Way of Delphi” which you can expect to
see regularly in these pages. Paradox mas-
ter Cary Jensen’s “DBNavigator” column
follows, where each month Cary will
share his database skills.

Borland’s own Jim Allen and Steve
Teixeira then uncork a custom 3-D
Label component in their “From the
Palette” column. Besides being a useful
component in its own right, it’s a great
demonstration of how to pick an ances-
tor component and then selectively
accept, override, or add to the inherited
behavior. It’s a perfect fit for our OOP
issue. David Rippy rounds out the fea-
tured articles with his bi-monthly col-
JUNE 1995
umn, “At Your Fingertips”. David has a
penchant for illustrating useful tips with
brevity and humor, and this month’s
offering is no exception.

Probably the “hottest” third-party product
right now is EarthTrek’s Conversion
Assistant which helps convert VB projects
into Delphi projects. Gary Entsminger
has structured his review in a way I think
most programmers will like. Rather than
run through a list of features, he presents
us with a test conversion that demon-
strates exactly what the Conversion
Assistant does and does not convert.

So there you have it. Each issue will have
a cover topic supported by two or three
articles, and a sub-topic that usually takes
the form of the “Informant Spotlight”.
With any luck we’ll be able to create some
synergy between articles — Brian
Johnson’s VB article and the Conversion
Assistant review provide a good example.
Each month we’ll also feature the latest
add-in products in our Delphi Tools sec-
tion, and keep you informed regarding
any Delphi-related news in our Newsline
section. Finally, most issues will end with
book reviews. We’ll review books on a
wide variety of topics, but make a special
effort to review Delphi-specific titles.

Delphi Informant is a young magazine and
we want to get it off on the right foot.
Please let us know what you think. The
response so far has been overwhelmingly
positive, but you had many questions as
well. Will the magazine be for beginning
programmers? Advanced programmers?
Will you have product reviews? Book
reviews? Will you cover database and
client/server topics?

The answer to all these questions is “Yes!”
To use the vernacular, we want the decision
to buy Delphi Informant to be a “no brain-
er.” That is, if you’re a Delphi developer,
you’ll want the magazine. That’s the beauty
of a product-specific magazine. Delphi
Informant can serve the spectrum of
Delphi users — from hobbyists to consul-
tants to corporate developers to academia.

So how are we doing so far? Are we cover-
ing the topics you need to know about?
Do you want more articles that address
Object Pascal language basics? More or
fewer database-related articles? I want to
hear from you and the best way to reach
me is via e-mail at CompuServe address
70304,3633. Article topics and comments
about the magazine — positive and nega-
tive are welcome. And please let me know
if you want an editorial page (i.e. this
page). Hey! It could have been far worse.
I could have run my picture and told you
all about the last conference I attended.

Thanks for reading and I hope you enjoy
Delphi Informant.
Delphi INFORMANT ▲ 2

JUNE 1995

Delphi Training

The Data Guidance
Company is offering Delphi

training in Minneapolis, MN this
month. Beginning Delphi runs
June 5 & 6, 1995 and costs
US$495. Advanced Delphi is

scheduled for June 7 & 8, 1995
for US$695. A discount price of
US$1095 is available for those
enrolled in both courses. For

more information, or to enroll,
call (612) 544-4219.

The Coriolis Group is offering
a Delphi Starter Kit that contains

the Delphi Programming
Explorer, a 500+ page Delphi

programming book by Jeff
Duntemann; EarthTrek’s

Conversion Assistant, a tool that
reads and converts Visual Basic
project and program files into

Delphi; and several custom con-
trols. The kit sells for US$99.99,

and includes a CD-ROM.
For information, or to order,

call (800) 410-0192 or
(602) 483-0192

Delphi
T O O L S

New Products
and Solutions
Woll2Woll Software Announces InfoPower 1.0

Woll2Woll Software of San
Jose, CA has announced the
release of InfoPower 1.0, a set
of data-aware Delphi VCL
components for developers
creating database front-ends
with Delphi.

InfoPower has several compo-
nents that allow database appli-
cation end-users to sort, filter,
view, select, and edit informa-
tion. According to the company,
InfoPower is composed of native
Delphi components automati-
cally linked into the compiled
.EXE file, allowing developers to
distribute and install a group of
separate controls into the user’s
Windows directory without
additional constraints.

InfoPower’s features include: a
Super Database Grid for creat-
ing a table grid that includes
check boxes, combo boxes, a
Super Database Grid for dis-
playing multiple related tables;
a Lookup Combobox for dis-
playing one or more columns
of data in a single, drop-down
listbox; and an Advanced
Filtering component for view-
ing specific data.

In addition, InfoPower has a
Sort component for selecting
any primary or secondary
index, an Auto-Expanding
Memo component, and an
Incremental Search component.
Price: US$149 until August 31, 1995
(price returns to US$199), includes a
30-day money-back guarantee.

Contact: Woll2Woll, 1032 Summerplace
Drive, San Jose, CA 95122

Phone: 1-800-WOL2WOL or
(408) 293-9369

Fax: (408) 287-9374
InfoSpy 2.3 for Delphi Developers

Dean Software Design, of
Mill Creek, WA has released
InfoSpy 2.3 for Windows 3.1,
Windows 95, and OS/2.
InfoSpy is a Windows utility
that provides spy, trace, moni-
toring, alarms, and scheduling
functions in a single config-
urable MDI application. It can
be hidden or set to require
passwords to prevent changes
to its configuration.

InfoSpy reports on heap, mem-
ory, DOS memory, Windows,
tasks modules, classes, global
atoms, multimedia, device dri-
vers, DOS environment, open
files and file handles, VxDs,
Vms, CMOS, Version, timer
information, and more.

Its screen capture capabilities
will capture desktop, window, or
cut a portion to the Clipboard
or a .BMP file. Applications can
be terminated and modules can
be unloaded from the desktop.
You can restart Windows —
warm or cold boot — with a
rapid shutdown option. Other
functions include Compact
Global Memory and the ability
to prioritize tasks.

InfoSpy 2.3 is available on
the Delphi Informant
Companion Disk and for
download from the
Informant Bulletin Board.
Library name: DSWINLIB.
File name: ISPY230.ZIP

Price: US$19.99. Shareware version avail-
able on CompuServe’s Delphi Forum, or on
America On-Line’s Windows Top Picks.

Contact: Dean Software Design, P.O. Box
13032, Mill Creek, WA 98082-1032

Phone: (206) 316-8645

E-mail: SteveDean@aol.com
Delphi INFORMANT ▲ 3

JUNE 1995

New Delphi Books

Delphi Programming
Unleashed

By Charles Calvert
Sams Publishing

ISBN: 0-672-30499-6
Delphi Programming Unleashed
is written by a member of the
Delphi Development Team. It

contains tips and techniques for
creating Delphi applications.
Price: US$36 (1000 pages)

Phone: (800) 428-5331

teach yourself...Delphi
By Devra Hall

MIS Press
ISBN: 1-55828-390-0

teach yourself...Delphi progresses
from basic Delphi examples into
a fully functional program. The
book contains a diskette of cus-
tom controls and DLL functions
by Sheridan Software Systems.
Price: US$27.95 (309 pages)

Phone: (800) 488-5233

Delphi
T O O L S

New Products
and Solutions
HyperAct Ships Pasterp 2.5

HyperAct, Inc. of Coralville, IA
has released Pasterp 2.5, an
application script language for
Delphi, C++, and Borland
Pascal. It includes a function
library, short examples, and
demonstration projects. Pasterp
supports object-oriented frame-
works, dynamic dispatch func-
tions, and arrays.

Pasterp can be linked directly
to Delphi applications, with
DLLs, VBXes, etc. It also has a
small footprint of 150KB.

Used in Windows from Delphi,
C++, or Borland Pascal applica-
tions, and in DOS from
Borland Pascal real and protect-
ed mode applications, Pasterp
can tie new functions, variables,
and constants to your applica-
tions. It can also be used as a
DLL and is compatible with
event-driven applications.

In addition, Pasterp can be
implemented as an object hier-
archy that can be derived to
provide application-specific
functionality. It can create user
configurable and extendible
applications, automated tasks,
scriptable macros, and expres-
sion evaluation.

Pasterp has no royalty fees. A
demonstration copy is avail-
able from CompuServe’s
Delphi Forum, the Delphi
Informant Companion Disk,
and for download from the
Informant Bulletin Board.
Library name: DIWINLIB.
File name:PTRPDEMO.ZIP.
Price: US$200; Pasterp with Object
Pascal source code, US$800. (Prices do
not include shipping and handling fees.)

Contact: HyperAct, Inc. P.O. Box 5517
Coralville, IA 52241

Phone & Fax: (319) 351-8413

CompuServe: 76350,333

Internet: rhalevi@hyperact.com

Internet Home Page:
http://www.hyperact.com/hyperact.html.
Add Faxing to Delphi Applications

MicroHelp Inc. of Marietta,
GA has released Fax Plus, a
control for adding fax sending
and receiving capabilities to an
application. It can use almost
any Class 1, Class 2, or Class
2.0 fax modem (including many
CAS-compatible modems).

Fax Plus allows users to send
faxes from ASCII text, .BMP,
.PCX, and .DCX file formats.
Using Fax Plus’ custom printer
driver, users can also capture the
output of any Windows applica-
tion that supports printing, and
then send that output as a fax.

Fax Plus is customizable. For
example you can control the sta-
tus display used when sending
and receiving faxes by using
those provided with the demon-
stration program, or by design-
ing your own. Fax Plus provides
low-level control over your fax
or modem. Users can design
phone-book databases, cover
sheets, fax file archives, etc.
Fax Plus includes a 100-page
fully-indexed manual, a
Windows help file, and free,
full-time technical support.

There are no run-time royal-
ties when distributing single
user applications. Contact
MicroHelp for more infor-
mation about network “fax
server” pricing.

Price: US$249, plus shipping and
handling.

Contact: MicroHelp Inc., 4359 Shallowford
Industrial Parkway, Marietta, GA 30068

Phone: (800) 777-3322

Fax: (404) 516-1099

BBS: (404) 516-1497
Delphi INFORMANT ▲ 4

JUNE 1995

Starfish Software has released
Sidekick Deluxe, a multimedia

CD-ROM version of Sidekick 2.0
for Windows. It includes over 40

content files called Sidekick
Companions plus Dashboard 3.0,
a personal utility for Windows. In
addition, Sidekick Deluxe contains
a video on getting organized with
the Starfish 5-point program, fea-
turing Starfish Software Chairman
Philippe Kahn. According to the
company, Sidekick Deluxe will be
on store shelves nationwide by

Memorial Day.

Object Management Group,
co-sponsor of Object World, and
Computerworld are seeking sub-
missions for the Computerworld

Third Annual Object Application
Awards. Winners will be featured
in Computerworld and announced
at Object World/San Francisco on

Wednesday, August 16, 1995.
The awards showcase innovative
custom applications using object
technology. Applications must be
currently in use, and meet one
of the following qualifications:
built from scratch; a modifica-
tion of an off-the-shelf applica-
tion; or an object-oriented front-
end for a host application. All
entries must be postmarked by
midnight, EST, May 16, 1995.
All entrants are required to com-

plete an official entry kit. For
information call (508) 820-4300,

or fax (508) 820-4303.

News
L I N E

June 1995
Delphi World Tour
Orlando September 14-15
Phoenix September 18-19
Detroit September 21-22
Houston September 25-26
Raleigh/
Charlotte September 28-29

Calgary TBA
Toronto TBA
Sydney TBA
London TBA
Amsterdam TBA
Denmark TBA

Columbus July 6-7
Boston July 10-11
Los Angeles July 19-20
Philadelphia July 25-26
Chicago July 31-Aug 1
Seattle August 2-3
Dallas August 15-16
New York August 17-18
Atlanta August 21-22
San Francisco August 24-25
Washington DC August 28-29
Denver September 7-8
Minneapolis September 11-12
Addison, IL — Softbite
International, Borland
International, and Informant
Communications Group have
announced the 1995 Delphi
World Tour. The two-day semi-
nar will take place in Columbus,
Boston, Los Angeles,
Philadelphia, Chicago, Seattle,
Dallas, New York, Atlanta, San
Francisco, Washington DC,
Denver, Minneapolis, Orlando,
Phoenix, Detroit, Houston,
Raleigh/Charlotte. International
stops are also planned, but
details weren’t available at press
time.

The Delphi World Tour is a 2-
day event. Attendees can attend
both days or only one day. Day
One, “The Main Event,” will
show how Delphi can be used
to build stand-alone, LAN, and
Client/Server applications.
Components, form design,
event handling, properties,
database access, programming,
and other aspects of Delphi
development will be covered.
Client/Server development in
Delphi will also be introduced.

Day Two, “Delphi Extended
and Delphi Client/Server,”
will cover Delphi development
in more detail, including pro-
gramming common tasks,
accessing data via the Borland
Database Engine, reporting
with ReportSmith, writing and
using VBX and stand-alone
DLLs, and a detailed look at
Client/Server development
using Delphi.

Delphi World Tour attendees
will receive a free copy of
Delphi, a free starter subscrip-
tion (three issues) to Delphi
Informant, documentation and
diskette containing Delphi
code, a free copy of Delphi
Informant at the event, and a
copy of the Delphi Power Tools
Catalog (Summer 1995).

In addition, attendees can
meet with local third-party
consultants, trainers, and book
vendors during the “Delphi
Networking Lunch.”

Pricing for the Delphi World
Tour is US$545. Those
attending only “The Main
Event” pay US$295.
Discounts are available for
three or more attending from
the same company.

To receive a complete brochure
via fax, dial (708) 833-9122
from a fax machine, and request
document number 5. The
brochure can also be requested
by calling Softbite International
at (708) 833-0006, or via
Internet at register@softbite.-
mhs.compuserve.com.
Borland Rolls Out Delphi Client/Server Bundle

Scotts Valley, CA —Borland
International, Inc. has
announced it will offer a special
Delphi Client/Server Bundle.
This package includes five
Delphi Client/Server units,
maintenance contracts for one
year, and a choice of customized
technical support options.

According to Borland, the
bundle offers one-year mainte-
nance contracts that include a
32-bit release for Windows 95.
This release will be fully com-
patible with the current version
so that applications can easily
be recompiled for Windows
95; (the release is scheduled to
ship shortly after the commer-
cial release of Windows 95).

The Delphi Client/Server
Bundle provides two unique
support options: an unlimited
number of technical support
calls for two designated corpo-
rate contacts for one year, or a
45-hour block of technical
support time to be used by an
unlimited number of corpo-
rate contacts.

The Delphi Client/Server
Bundle’s retail value is
US$17,499.75, but through
June 30, the package price is
US$15,000 through Borland
major account resellers:
Egghead Software, Software
Spectrum, Softmart, Corporate
Software, and ASAP Software.
The bundle is also available
directly from Borland, by call-
ing (408) 431-1064.
Delphi INFORMANT ▲ 5

JUNE 1995

Lotus Development Corp. has
announced they will ask the US

Supreme Court to review the First
US Circuit Court of Appeals’ deci-

sion to clear Borland International
of copyright infringement. A Lotus
spokesperson said the company

would file its petition with the
Supreme Court this month.
The First US Circuit Court of
Appeals recently reversed the

District Court ruling that stated the
Quattro and Quattro Pro spread-

sheet products, formerly developed
and marketed by Borland, infringed

the copyright of Lotus 1-2-3.
According to Lotus, this current rul-

ing would promote plagiarism.
Borland spokesman Steve Grady
was confident that Lotus wouldn’t

convince the Supreme Court to rule
in their favor. He said that even if
the Supreme Court overturned the

current decision, the case would still
go to the appellate court for a hear-

ing on Borland’s defense.
Lotus was expected to request

US$100 million in damages — an
amount that would have put

Borland out of business.

The board of directors for the Object
Management Group (OMG) has

decided to address the need for
industry specification in vertical

application domains.
They have chartered a committee to
recommend a formalized process

with supporting organizational struc-
ture to be instituted in 1995.

OMG members work to develop and
use integrated software systems, and

believe that the object-oriented
approach best supports these efforts.

For more information contact
OMG at (508) 820-4300.

News
L I N E

June 1995
Informant Announces CompuServe Forum

Elk Grove, CA — Informant
Communications Group,
publisher of Paradox
Informant and Delphi
Informant has announced the
company will go on-line with
a new Forum on the
CompuServe Information
Service. The Forum will be
available to the general public
by early June 1995.

The Informant Forum will
include message areas for both
Paradox and Delphi users to
exchange technical informa-
tion, ask questions, and get
technical help with each prod-
uct. In addition, the Forum
will contain code listings and
support files appearing in each
Informant magazine.

“We’re extremely excited about
being associated with
CompuServe and having the
Informant Forum” said Mitchell
Koulouris, Publisher of Paradox
Informant and Delphi
Informant. “The Informant
Forum allows us not only to
offer superior service to our cus-
tomers, but to get feedback
from our readership so that we
can make continuous enhance-
ments to our magazines. We’ve
been besieged by readers to pro-
vide a CompuServe Forum and
we are proud to deliver this to
our readers. We listen to our
readers and the Informant
Forum provides an excellent
vehicle to get the important
feedback we need to continue
to improve our products on an
ongoing basis.”

Visitors to the Informant
Forum will also be able to order
back issues, place subscription
orders, renew existing subscrip-
tions, and inquire about adver-
tising. In addition, the Forum
will feature important figures in
the Paradox and Delphi devel-
opment communities in
Conferences, allowing readers to
ask questions on-line. There will
also be areas for third-party ven-
dors to provide support for their
tools and services. The Library
areas will include all code list-
ings and support files appearing
in each issue of the magazine, as
well as third-party demonstra-
tion software and shareware.
Informant readers can obtain
a free CompuServe starter kit
that includes the latest version
of WinCim and a US$15
usage credit by contacting
Informant Communications
Group at (916) 686-6610.
To access the Informant
Forum, type “GO ICG”
from the CompuServe
command prompt.
New RAD Pack
for Delphi

San Francisco, CA — Borland
International Inc. has
announced the release of the
RAD Pack for Delphi, a power-
ful new companion tool set that
combines many of Borland’s
products into one package.

The RAD Pack includes the
Visual Component Library
source code and the Resource
Workshop for extracting and
modifying standard Windows
resources, such as icons, cur-
sors, bitmaps, and dialog
boxes. It also features a
Resource Expert that converts
standard resource scripts into
Delphi forms, a Delphi
Language Reference Guide,
and the Turbo Debugger.

In addition the RAD Pack
contains a Visual Solutions
Pack with a collection of
VBX custom controls
including spreadsheet con-
trol, WYSIWYG word
processors, asynchronous
communications, image edi-
tors, and gadgets.

The RAD Pack will be avail-
able this month through
major resellers or directly
from Borland at a suggested
retail price of US$249.95. For
more information, call
Borland at (800) 453-3375,
extension 1309.
Brainstorm Technologies Discloses Plans for
Partnership with Borland

Boston, MA — Brainstorm
Technologies Inc. has revealed
the terms of a world-wide joint
agreement with Borland.
Brainstorm said it’s exploring
ways to expand to include prod-
ucts that integrate Lotus Notes
across Borland’s PC databases,
programming languages, and
development tools.

Initially, this agreement gives
Borland exclusive rights to
market Brainstorm’s
Delphi/Link for Lotus Notes
software through Borland’s
channels under the
Brainstorm brandname.
Current generation tools have
supported Notes on an “ad-
hoc/patch” basis. Brainstorm is
planning to release several
solutions in the next few
months, providing Notes end-
users with access to more tools,
databases, and applications.

According to Mitchell Liu,
Chief Technology Officer of
Brainstorm Technologies, this
agreement allows existing
Borland client/server and
database developers to archi-
tect enterprise-wide industri-
al strength Lotus Notes-
enabled applications.
Delphi INFORMANT ▲ 6

Kahn Sends Open Letter to Lotus and Microsoft
IDG World Expo, Computerworld,
and the Object Management

Group announced the winners of
Computerworlds’s Second Annual

Best New Object Technology
Product Awards held at Object

World Boston March 19-23, 1995.
The Industry Judge Awards went to:

Best New CORBA-Based Product
NetLinks for the ORBitize V1.1

Best New OT Development Product
IBM for VisualAge of C++ Version 3

Rational Software Corporation for
Rational Rose Family Version 2.7

Best New Component or
Library Product

Cadre Technologies for the
ObjectTeam Application Factory

The Attendees Choice for Best New
Overall OT Product was given to

IBM for the VisualAge C++
Version 3.

Boston University’s Center for
Information Technology is again

sponsoring the International
Developers Conference for

Windows June 12 - 16, 1995. The
5th annual event features General
Win32 Programming, Advanced
Topics in Win32 Programming,

Special Interest Windows
Programming Topics, OLE

Programming, Programming
Windows Using C++ (MFC/OWL),

and the Designer’s Workshops.
For more information, call

(508) 649-4200 or
fax (508) 649-2162.

News
L I N E

June 1995
Scotts Valley, CA — Philippe
Kahn, CEO of Starfish
Software and Chairman of
Borland International Inc.
recently posted an open let-
ter to Lotus Development’s
Jim Manzi and Microsoft’s
Bill Gates. This letter, which
was published in the Wall
Street Journal in March,
encouraged both Manzi and
Gates to invest less in their
legal departments and more
in their research and devel-
opment teams. According to
Kahn, “a bit of creativity can
save us from turning the
software industry into a legal
playground.”

In the letter Kahn criticized
Manzi for accusing Gates of
anti-competitive practices.
He wrote, “Let me refresh
your memory. Over four
years ago, you unfairly
attacked Borland by alleging
copyright infringement. You
knew, like all of us, that sys-
tems and functionality can-
not be copyrighted. Never-
theless, you relentlessly tried
to put our company out of
business. We had the best
technology, but you decided
to beat us in court, and not
compete in the marketplace
.... Unfairly you destabilized
our company: you put doubt
in the minds of our cus-
tomers, you questioned our
viability, you manipulated
public opinion right up to
the day when the Court of
Appeals issued its opinion.”

Kahn then turned the spot-
light on Gates, asking him
not to “stick it” to the
industry. He asked Gates to
use his position of leader-
ship to “foster industry prac-
tices that will help the soft-
ware industry grow” and
assure customers that the
JUNE 1995
software industry will remain
fair and competitive.

Even in portions of the letter
directed to Gates, Kahn kept
Manzi’s role in focus. He said
Manzi’s unfair competitive
practices certainly helped
Microsoft — and all Borland’s
competitors flourished as
Manzi relentlessly attacked
Borland’s reputation.
In closing, Kahn reiterated
Gates’ leadership role with the
release of Windows 95. He
asked Gates to “take the high
road” by making Windows 95
a level playing field where all
can fairly compete. Kahn
wrote, “We’ll all get behind
you and we’ll all put more cre-
ativity to work as we continue
developing the best software in
the world. Out of courts of law
and government intervention!”
Microsoft’s SQL Server 6.0’s
Planned Release

Redmond, WA — Microsoft
Corp. recently announced
that Microsoft SQL Server
6.0 is scheduled to ship this
month. Microsoft SQL
Server 6.0, code-named SQL
Server 95, includes an all-
new database technology
designed for customers who
are deploying distributed
client/server systems.

The new version of Microsoft
SQL Server features built-in
data replication, parallel
architecture enhancements, a
centralized console, distrib-
uted management objects,
and improved programmabil-
ity and adherence to stan-
dards like ANSI SQL.

In addition, customers who
license Microsoft SQL Server
version 4.21a for Windows
NT after March 15, 1995
will receive a free upgrade
to Microsoft SQL Server 6.0
when it’s available. Regi-
stered users of Microsoft
SQL Server for OS/2 can
also upgrade to SQL Server
version 4.21a for Windows
NT and receive a free
upgrade to SQL Server 6.0
when it’s released. After April
1, 1995, Microsoft SQL
Server for OS/2 will no
longer be available as a retail
packaged product. It will be
available through the
Microsoft Select volume
license program through
June 30, 1995. However,
Microsoft will continue to
offer technical support to
existing SQL Server for
OS/2 customers.

In April, a beta version of
Microsoft SQL Server 6.0
was made available to more
than 2,500 customer sites
worldwide. These sites
included customers, develop-
ers, VARs, and Solution
Providers. It was the fourth
beta release of the Microsoft
SQL Server 6.0 software,
which has been undergoing
testing at 250 sites since
October 1994.

The scope of the release
makes it one of the largest
beta programs ever conduct-
ed in the database industry.
The beta was feature-com-
plete and was provided to
customers to help them eval-
uate new functionality and
plan migration strategies.
Delphi INFORMANT ▲ 7

JUNE 1995

OOP for the Uninitiated
Fundamentals of an Object-Oriented Environment

On the Cover
Delphi / Object Pascal

By Mark Ostroff
A large part of Delphi’s power comes from its robust support of object-
oriented programming, or OOP. This article will introduce the basic con-
cepts underlying OOP to an audience who is unfamiliar with object ori-

entation. If you’ve heard all the talk about OOP and are wondering what it’s
about, this is the discussion you’ve been looking for.
A Hardware Analogy
You already use object orientation without realizing it — in your PC hardware. Let’s start with a
familiar hardware example — that of upgrading the video board in your PC (see Figure 1.) The
video board is an object. You really don’t care how it works. You’re just interested in the results.
Because a standard interface has been defined for all video board “objects,” you can upgrade easily.
You don’t need to replace the entire PC or become an electronics engineer and design your own
board. You simply replace the old video board with a better one.

Another advantage of this type of component architecture is your ability to share components with
other users. These components are reusable. For example, once you’ve upgraded your PC video
board, that same standard interface allows you to pass your old video board to a co-worker. Thus,
a single upgrade can have a “ripple effect” throughout various parts of an organization.
Figure 1: Hardware components (objects) in use.
A third advantage of compo-
nents involves the amount of
expertise required. Using a col-
lection of standard components,
you can build functional items
without having to know how to
build the individual parts. The
choice to “build or buy” is now
available to you.

Finally, components provide
easy support for maintenance.
If a problem is discovered with
your video board, you need
only replace the video board,
and not your entire PC.
Delphi INFORMANT ▲ 8

On The Cover
This “plug and play” concept of creating reusable components is
not new. It’s the basis for the entire Industrial Revolution. What
is new is the ability to apply these concepts to the world of soft-
ware programming. The creation of reusable software components
or “objects” is what OOP is all about.
Foundation Concepts of OOP
OOP is based on four fundamental concepts. The first three con-
cepts are well known and the technical terms for these concepts are
encapsulation, inheritance, and polymorphism. The fourth concept, a
division of programmer talent, involves leveraging the talents of
people across your entire organization (more on this later).
Encapsulation
The first OOP concept is known as encapsulation. The idea is that
data structures and code routines are bound together, or encapsu-
lated, into a single entity called an object. The data structures of an
object are known as properties and the object’s code routines are
called methods. All access to the object’s properties and methods
must go through the object’s interface (see Figure 2).

Relating encapsulation to our hardware analogy, a video board
encapsulates all the I/O subroutines, internal data caches, and
minute details of how to make a collection of dots appear on the
screen. This one object embodies all those details so that the board’s
user doesn’t have to be concerned with internal details. We just use
the API (Application Programming Interface) of the board. For
example, we simply want to say “draw a circle” and have it happen.
We don’t really care about how the computer accomplishes this task.

In the world of software, what are the main advantages of object
encapsulation? Most programming problems arise from the issues
of code re-entrancy and data access concurrency. Encapsulation
eliminates these issues as sources of programming glitches. Since
similar objects can be created that use the same code routines
encapsulated within themselves, all program code is re-entrant.
Object encapsulation protects data access in such a way that con-
currency never becomes an issue.
Figure 2 (Top): Encapsulation allows the creation of software
components. Figure 3 (Middle): Structured code sitting on a
sea of unstructured data. Figure 4 (Bottom): This schematic of
encapsulation explains why structured programming is not
enough to ensure that a routine will perform to expectations.
Encapsulation allows the creation of software components.
Encapsulation vs. Structured Programming
Before OOP, standard coding methodology involved a concept
known as structured programming. Structured programming pro-
vided a clearly defined way for packaging code modules into sub-
routines, and for defining the way each code routine interfaced
with each piece of code.

Structured programming is limited because it provides no way to
structure the data used by an application. Therefore, although
the code was structured, it sat atop a vast sea of unstructured
data (see Figure 3). The programmer was responsible for insuring
that each routine treated this data sea in a well-behaved manner.

This lack of data access structure led to a common problem —
the ill-behaved routine. Since only the code was structured, an
errant pointer or a memory glitch could send a routine off modi-
fying data that other routines were using. This often led to mys-
terious and disastrous side effects (see Figure 4). For example,
JUNE 1995
have you ever fixed one routine only to find that your “fix” broke
something else that was totally unrelated?

A more common example of this in the software world is the
improper set-up of Expanded Memory Specification (EMS) mem-
Delphi INFORMANT ▲ 9

On The Cover
ory managers. If your system has a video board with 1MB of
RAM, the EMS driver must be told explicitly not to use that
extra video RAM for EMS page framing. (In most cases, you
must tell the EMS manager to exclude the memory locations
C000-CFFF from use.) If this is not done, the system may run
fine for awhile. When a software package that heavily uses video
is invoked, both the graphic software and the EMS driver may
try to use the same memory locations for different purposes.

First, let’s say the graphics package draws a rich image on the
screen. It stores video information in the C000-CFFF range. Then,
the EMS manager looks at the same range of data. Unfortunately,
the EMS manager thinks this information is memory page frame
data and tries to jump to a non-existent “memory location” (since
the data is really screen information, not address data). This often
results in “strange” system crashes. Thus, protection from unwanted
side effects is a major benefit of encapsulation.
You can actually see this concept of encapsulation in Delphi’s
user-interface as you build an application. When you look at the
Object Inspector, you see a two-tab paged display (see Figure 5).
JUNE 1995

Figure 5: Delphi’s visual display of encapsulation.
The visible API
of each object
includes a set of
data values called
Properties and a
set of possible
code routines
labeled Events (or
event handlers).
As you select dif-
ferent types of
objects, different
properties and
events appear in
the Object
Inspector.
Beyond Strong Data Typing and Scoping
Encapsulation provides the structure needed to protect the data each
routine uses from unexpected use by other routines. This structure is
the mechanism whereby only methods that belong to an object can
modify the data within that object. Methods from any other object
must make calls to the object’s methods to view and modify the
properties in that object. (See Figure 2 for an illustration.)

Often, programmers say they can accomplish the same results
that OOP provides simply by using strong data typing, variable
scoping, and careful coding. However, using strong data typing
and careful variable scoping does not afford the same level of data
protection. Strong typing only identifies what type of information
can be stored in a variable. It can only tell you what doesn’t belong
somewhere. Furthermore, it offers no information regarding
which code modules should be allowed access to the data.

Variable scoping provides some amount of access control, but
leaves many loopholes in providing data protection. For example,
the documentation for many add-on code libraries includes
statements such as, “Before using this library, make sure you
define the following variables” or “This library reserves the fol-
lowing variable names for its own use.” What prevents someone
from using these reserved names? Faith!

Often, these variables need to be defined as globals, and that is
one area where problems arise. An example from the real world
is withdrawing cash from the bank. We all hate waiting in lines,
so why not let people simply go behind the counter and process
their transactions? Because that simply wouldn’t be safe. What
would prevent someone from taking cash from your account, or
from withdrawing more money than they had? Therefore an
intelligent agent is needed behind the counter.

In a bank, we need access to certain routines to be restricted.
The same idea applies to application development. Yet, struc-
tured programming offers no way to hide program code modules
from each other. OOP provides a way of creating scoping rules
for your application’s code as well as for your variables.

Let’s return to the bank teller analogy. The idea of variable scop-
ing can be seen in controlling account information. For example,
I can only look at the information in my accounts and you can
only see your accounts’ data. Code scoping can be seen in con-
trolling how that data is accessed and modified. I have no idea
what internal procedures the bank teller performs to post a
deposit to my account. That routine is “scoped” as being private
to the “bank teller object.”

In the same way, Delphi provides both data and method scoping
capabilities. How does this work to provide added protection to
your application? Let’s say you need to create an object that has a
property that you want to make sure is never overwritten. You
want other objects to be able to see this property’s value, but not
have the ability to change it. The code sample in Figure 6 shows
how to define such a “global read-only” property using Delphi’s
encapsulation and scoping constructs.

To see the effects of this VCL class, create a form with a
TRODemo object and TButton object. Add the following code to
the TButton’s OnClick event, run the form, and click on Button1.

procedure TForm1.Button1Click(Sender: TObject);
begin

RODemo1.Caption := RODemo1.GetROProp;
end;

Simply put, the code declares the property to be private to the
object class (and thus inaccessible from direct manipulation by
other objects). The code also defines a public method for reading
that “invisible” property. Other objects can read the property,
but only by using the public method defined.

That’s what encapsulation is all about. Your application uses
multiple co-equal intelligent agents to get the job done. Thus,
encapsulation is a safer way to structure both your code and
your data.
Delphi INFORMANT ▲ 10

JU

Defining Some OOP Terms
Much of the confusion experienced by someone new to OOP
is due to the huge number of new technical terms.
Unfortunately, many of these terms seem to be defined in
almost the same way. The subtleties of the differences can
elude even the most technically-aware OOP neophyte.
Problems in coding can arise when the distinctions between
the following terms are not kept clearly in mind.

Class: A class or class definition is the blueprint of the OOP world.
It determines what the defined methods and properties will be for
all objects created from that class. Just as the blueprint for a
Chevy Nova is not an actual car itself, so the class is not an object
itself. It merely defines how to build an object, and what its capa-
bilities will be once it’s created.

Object: An object is an actual entity that is created at run-time
and lives in active program memory. An object is created
from a class definition that determines what methods and
properties it has, and can also define what the initial values
for those properties are.

Once an object is created, it no longer refers back to the class
from which it was created. Thus, any run-time changes made
to an object have no effect on any other objects created from
the same class. (In the same way adding a ski rack to our Nova
has no effect on any other cars made by GM.)

Instantiation: Instantiation is the name given to the process of
creating an in-memory object from a class definition. This
process creates an instance of the class, hence the name.

Constructor: Each class definition will have a section of code that
tells the system how to instantiate an object of that class. This
instantiation code is called the constructor. The constructor is
called to allocate memory for an object instance, initialize its
properties, and perform any other “startup code” the object may
require. Delphi’s components use the Create method as their
constructor.

Destructor: Just as a class definition needs a constructor method,
it also needs a section of code that controls how to remove an
object instance from memory. This “clean up” code is referred
to as the class’ destructor. It should be defined to perform any
“shut down” code needed, and then release all resources associ-
ated with a particular object instance. The use of destructors is
vitally important to the issue of resource management. Delphi
components use the Destroy method as their destructor.
NE 1995
Ancestor Class: An ancestor class is a class from which property
and method definitions are inherited. This ancestor class may
not be the immediate parent from which a child class was
defined. It may be higher up on the inheritance hierarchy. For
example, in Figure 9, TControl is an ancestor of TRODemo, but
is not its immediate parent.

Parent Class: A parent class is the immediate class from which
property and method definitions are inherited to create a
new child class definition. Thus, “Automobile” would be the
parent class for our Chevy Nova, “Shape” is the parent class
for our Rectangle class, and TLabel is the parent class for
TRODemo.

Descendent Class: Any class that has been defined based on
inheritance from another class is known as a descendent
class of that ancestor. The terms child class and descendent
class are usually used interchangeably. A more strict defini-
tion would be that a descendant class is any class that
inherits from an ancestor, and may or may not be the
immediate child of that ancestor. In other words, parent
and child classes describe immediate inheritance relation-
ships, while ancestor and descendant are their more general
corollaries.

Sub-Classing: The process of creating a descendent class defini-
tion through inheritance from a parent class is called sub-class-
ing. Sub-classing only has meaning in the context of the meth-
ods and properties inherited from the parent class. The child
class thus created will of course have additional properties and
methods defined, or will redefine one or more of the parent’s
methods (i.e. use polymorphism), or both. After all, the whole
idea behind sub-classing is to create a new class from the
building blocks of an existing one.

Single Inheritance / Multiple Inheritance: Some OOP tools allow
you to create a class definition that inherits from more than
one parent class. This ability to have more than one parent
class is called multiple inheritance. C++ tools typically support
this type of inheritance.

However, most OOP tools (including Delphi) only allow
inheritance from a single parent. These tools are said to sup-
port single inheritance. Since there are enough complexities in
creating custom classes already, programmers just starting to
define custom classes should limit themselves to the single
inheritance model.
Delphi INFORMANT ▲ 11

Figure 7: Inheritance allows programming by exception.

On The Cover

Figure 6: RODEMO.PAS — using encapsulation to create a global
ReadOnly property.

unit RODemo;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TRODemo = class(TLabel)

private
{ Private declarations - visible only to this class }
ROProp : String;
procedure SetROProp(ROValue: String);

protected
{ Protected declarations - visible to this class and

its decendants }

public
{ Public declarations - visible to all classes }
constructor Create(AOwner: TComponent); override;
function GetROProp : String;

published
{ Published declarations - visible to all classes,

and displayed in the Delphi Object Inspector }

end;

procedure Register;

implementation

constructor TRODemo.Create(AOwner: TComponent);
begin

{ Call the parent class' constructor }
inherited Create(AOwner);
{ Set the default value of the R/O property }
SetROProp('This value is scoped to be hidden');

end;

procedure TRODemo.SetROProp(ROValue: String);
begin

ROProp := ROValue;
end;

function TRODemo.GetROProp : String;
begin

Result := ROProp;
end;

procedure Register;
begin

RegisterComponents('Samples', [TRODemo]);
end;

end.
Inheritance
The second OOP building block is called inheritance. Just like
biological inheritance, OOP inheritance allows a programmer to
create child object definitions (called object classes) that inherit
the methods and data structures of the parent object class.

With inheritance, a programmer can simply use the inherited
methods and properties from the parent class without having
JUNE 1995
to recreate them from scratch. The programmer then simply
codes only the differences between the parent and child
objects. (This process is known as programming by exception.)
The developer’s time is then free to concentrate on creating
methods and properties that are unique to the child object.
Thus, inheritance allows developers to write less code. An
example is shown in Figure 7.

A second benefit to inheritance is it affords easier maintainabil-
ity. Have you ever created an application that needed to imple-
ment a change that rippled throughout dozens of code mod-
ules? Or perhaps you’ve created a database application where
the end-users wanted to add “just one more field” to multiple
data entry screens? Inheritance provides a mechanism to make
that change once, in the parent class. All object classes that
inherit from that parent will automatically acquire the change.

Along with encapsulation, inheritance can make debugging your
applications more secure as well. Encapsulation provides the
“firewalls” to prevent unwanted side effects. Inheritance then
safely makes the job easier. If a bug is found in a particular rou-
tine that is used in a variety of places, fixing it in the parent class
will automatically “ripple” that fix to all child classes.

Delphi fully supports the use of inheritance in every area of appli-
cation development. You can create custom Visual Component
Library (VCL) classes from scratch, or you can inherit from exist-
ing VCL and Visual Basic Extension (VBX) components. Thus, if
there is a component that is already close to what you want,
inherit from that component and then program the differences.

Delphi makes this process of sub-classing a component especially
easy with the Component Expert, shown in Figure 8. Select File
| New Component from Delphi’s menu to launch the
Component Expert. Give your new component a class name,
select an existing component from the Ancestor type drop-down
list from which to inherit, and enter the name of the Palette
Page where you want your new component to appear. Delphi
will then build the skeleton of your new component, ready for
you to code the new properties, methods, and behaviors that are
unique to that component.
Delphi INFORMANT ▲ 12

Sample Code Result Operation Performed

5 + 7 12 Mathematical Addition

“This is “ + “a string.” “This is a string.” String Concatenation

1/25/95 + 14 2/8/95 Date Math

Figure 10: Polymorphism illustrated in the use of the plus sign (+).

Figure 8 : Using
Delphi’s
Component Expert
to inherit from an
existing control.

Figure 9: Delphi’s Object Browser displays VCL inheritance.

On The Cover
Once you build your application (using either the Compile |
Build All or Compile | Run menu choices), Delphi can also
show a visual display of the inheritance hierarchy used in your
application. Select View | Browser from the menu, and you will
see Delphi’s Object Browser appear (see Figure 9).

The Browser display is based on the actual code used in the cur-
rently open project. Figure 9 illustrates the Object Browser for
an application that uses the TRODemo object shown in the code
in Figure 6. Notice that the display of the TRODemo class shows
that its parent class is TLabel, and that it contains only one prop-
erty (a read-only variable named ROProp) that has not been
inherited from TLabel.

You will find the Object Browser is particularly useful in deter-
mining all the available properties and methods for an object
class. The Object Inspector and Delphi’s documentation will
only tell you about what has surfaced in the specific class you are
viewing. There are many other properties and methods that may
exist by virtue of inheritance from an ancestor class. Remember
that the Object Browser is based on your actual code. Thus, the
Browser is always correct and complete.
Polymorphism
Polymorphism is the third building block of OOP. All program-
ming languages give us the ability to create a set of publicly avail-
able functions (known as public methods in the OOP world) for
each object. These public methods comprise the object’s API.
Polymorphism enables the programmer to use the same method
name to perform vastly different operations, based on the type of
object referenced by the method.

We make use of polymorphism all the time. For example, we use the
same word to mean different things based on the context. We can
JUNE 1995
apply a single word such as “run” to a person, nose, and computer
to obtain vastly different results without any need for additional lan-
guage commands. If we then add a new type of object, say a pair of
stockings, we can still use the same “run” command. Now we have
added yet another different result for this one word. The “code”
remains the same regardless of the type of object on which it’s used.
Because of polymorphism, we can simply tell an object to per-
form a particular method without having to be concerned with
any internal differences from one type of object to the next. Like
our video hardware upgrader, we simply make use of the stan-
dard API of the object — its public methods. We can leave the
details for the object to work out itself.

Returning to coding metaphors, let’s take a look at the plus sign
operator (+). The table in Figure 10 illustrates how polymorphism
is used in the form of operator overloading. The plus sign performs
a different function based on the objects upon which it’s acting.
OOP applies this concept to more than simple operators.
Polymorphism can be applied to entire code routines. Let’s say we
are creating a screen shape-drawing package. We’ve defined a generic
shape object class. From that parent, we’ve defined two child classes,
a triangle and a rectangle, each with its draw method defined.

The internal details of how to draw a triangle are very different
from the details of drawing a rectangle. In the past you would have
had to create a DrawTriangle function, a DrawRectangle function,
and so on. If you then wanted to add a new feature such as print-
ing, you would have to create an entirely new set of custom func-
tions. You would then have a giant case statement to process the
selection of which function to call based on the type of object.

When it came time to develop version 2 with a new type of object,
you’d have to go back through all that old code to make sure
everything still worked. You also would have to make sure that you
added this new object type to every case statement in every code
module where the object type needs to be referenced. This massive
code maintenance task becomes even more complex when the
application is being written by a team of programmers. To be
totally successful, nearly every programmer on the task would need
to know all the details about the project’s entire code set.

Polymorphism lets you ignore these details and simply say,
“Object, draw thyself.” In the real world, you can tell both your
friend and your dog, “Let’s go for a walk.” Your dog may scratch
at the door, but your friend will simply open it.

A code-based example from our shape drawing program is
shown in Figure 11. The source code simply tells each object to
Delphi INFORMANT ▲ 13

Figure 11: Polymorphism allows the developer to write simpler code.

On The Cover

unit Navlite;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls,Forms, Dialogs, ExtCtrls, DBCtrls;

type
TDBNavLite = class(TDBNavigator)
{ Declare which class to inherit from }

private
{ Private declarations - visible only to this class }

protected
{ Protected declarations - visible to this class and

its decendants }
public

{ Public declarations - visible to all classes }
constructor Create(AOwner: TComponent); override;
{ Polymorphism to produce a new effect }

published
{ Published declarations - visible to all classes,

and displayed in the Delphi Object Inspector }
end;

procedure Register;

implementation

constructor TDBNavLite.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
{ Call the parent class’ constructor, then set new

default values for properties }
VisibleButtons :=

[nbFirst,nbPrior,nbNext,nbLast,nbRefresh];
ShowHint := True;

end;

procedure Register;
begin

RegisterComponents('Data Controls', [TDBNavLite]);
end;

end.

Figure 12: NAVLITE.PAS — using inheritance and polymorphism to cre-
ate a new VCL component.
draw itself. New types of objects can be added at any time and
this same code will continue to work. As long as each new
object type has some kind of Draw method defined, the devel-
oper doesn’t have to be concerned about exactly what the Draw
method does. Thus, polymorphism enables developers to create
simpler code by insulating them from internal complexities.

Team development and code maintenance becomes a lot easier
too. Most of the programmers on a project can ignore vast
amounts of detail information. They simply need to know the
API of the objects with which they are working. If a problem is
found in a particular object’s code, the fix can be propagated
throughout the development team simply by fixing the parent
from which all the other affected classes are derived.

Delphi provides a simple way for supporting polymorphism with
the override keyword. In the code shown in Figure 12, we want
to create a version of the DBNavigator control that defaults to
being simply a record viewer. (It’s rather tedious to be constantly
turning off a whole lot of properties every time we want to create
a navigate-only navigator.) We also want this navigator to default
to showing the help hints for the buttons we use.

The way we do this is to override the DBNavigator.Create
method (the object’s constructor). In our Create method, we
merely call the parent’s constructor and then manipulate the
properties to set them the way we want inside NavLite’s Create
method. Polymorphism lets us instantiate either a
DBNavigator or a DBNavLite object with the same code —
ObjName.Create.

To see the effect of this VCL class, create a form and drop a
DBNavigator component and this new DBNavLite component
onto it. You’ll notice an immediate difference in the display of
the two controls, although both are calling their respective
ObjName.Create methods (see Figure 13).
Developer Types: Producers and Users
Most people who are familiar with OOP will readily recognize
the first three fundamental OOP concepts. There is however, a
JUNE 1995
very important fourth concept that is often ignored. With OOP,
you need to divide development between two types of program-
ming tasks: Producing new types of objects, and using objects to
create applications.

Each task area requires a special, unique set of talents and pro-
grammer temperaments. Usually developers who are good at cre-
ating robust object classes will not be the same programmers
you’ll want to have using those objects to create end-user appli-
cations. You will typically have a team of object producers and a
separate, larger group of object users. The developer is rare indeed
who is equally adept at both of these areas of OOP.

This division of labor is one of the reasons why OOP tech-
niques can offer significant productivity benefits to a wide-
range of programmers. In our hardware analogy, only a few
people have the expertise to design a video board. However,
since board users don’t need the same level of expertise in this
Delphi INFORMANT ▲ 14

Debunking Some OOP Myths
Object orientation is no magic bullet. The bene-
fits come from a proper application of the four
basic concepts of OOP. However, OOP is
indeed a significant advancement from past
technologies. As with any new idea, some people
resist the change. Others find the change confus-
ing. Still others find the idea stimulating and
challenging, but have little guidance as to how
to evaluate all the claims and counter-claims.

The truth about OOP has often been obscured
by a variety of half-truths, deceptions, and mis-
leading statements. We’ll examine five major
myths about OOP and set the record straight.

OOP Myth #1: OOP is Just a Fancy Name for
Structured Programming. In the February 1993
issue of DataBased Advisor Magazine, Bill
Gates and Dave Fulton were interviewed for
their comments about OOP. Their take was
that OOP was nothing more than a fancy
name for structured programming.

The Reality: OOP Is Much More. Anyone who
glosses over the basics of OOP with this kind
of statement simply doesn’t understand what
issues OOP is designed to address. As we’ve
seen, true object orientation involves a great
deal more than just structured programming.
True OOP is structured programming, plus
structured data, plus structured access to that
data. OOP also adds code scoping constructs
to the existing variable scoping constructs seen
in structured programming.

OOP Myth #2: Faster Development? Another com-
mon misconception about OOP is that it allows
for faster development. The truth is that it takes
time to create a proper foundation of object class
definitions from which to build. Programmers
also need to take the time needed to fully under-
stand the ramifications that using OOP should
have on the design process. For the first OOP
project, overall development time may actually
increase slightly (usually by about 20%) if you
have to create your classes entirely from scratch.

The Reality: Benefits for Version 1.0. Although the
initial version may take slightly longer to pro-
duce, there are significant benefits even for ver-
sion 1.0 projects. First, there is significantly less
code to debug. For example, one project started
out with 400,000 lines of procedural code, and
reduced the code count to around 140,000 lines
after converting to OOP. The resulting code is
cleaner and provides a much smoother debug-
ging cycle. Thus, the initial release will be far
more stable than most version 1.0 projects.

Delphi provides some additional benefits spe-
cific to its unique approach to Rapid
Application Development (RAD). Even develop-
ers new to OOP can become productive
almost immediately. Borland’s Delphi research
and development team has taken upon itself
the initial overhead of creating a set of robust
class definitions for you. The VCL includes 75
pre-built components that provide immediate
productivity. Delphi’s completely open archi-
tecture also lets you leverage the expertise of a
wide array of third-party developers who have
produced additional VCL components.
JUNE 1995
The Reality: Benefits for Application Revision. The
big benefit of OOP is reuse. Thus, the reality is
that OOP allows for faster revision for subse-
quent releases. One of the best examples of
OOP’s rapid revision capabilities is Quattro Pro
for Windows (QPW). Version 1.0 of this prod-
uct shipped on October 30, 1992. The next
version, QPW 5.0, shipped a mere 11 months
later with huge increases in functionality.

Due mainly to encapsulation and inheritance,
OOP also allows for safer revisions. Again,
QPW is a good example. Although QPW 5.0
had hundreds of new features, the product was
solid as a rock from day one.

OOP adds up to easier code maintenance.
Most organizations are finding the majority of
their development time is spent in code main-
tenance. Thus, OOP provides major benefits
in exactly the area where most people need it.

OOP Myth #3: It Has to Be SmallTalk. There are
purists who claim that proper OOP can only be
done in a language specifically designed for
OOP from the beginning. In many cases, these
purists will suggest a language such as SmallTalk.

The Reality: What Counts is Encapsulation,
Inheritance, and Polymorphism. You have a project
to get done. In today’s fiscal climate, the ideal is
to complete each project under budget and
ahead of schedule. Practicality demands you
select tools for which existing talent is widely
available.

The main benefits of OOP are code reuse and
code safety. These benefits are gained through
proper use of encapsulation, inheritance, and
polymorphism. These concepts are not depen-
dent on the specific OOP language used.

OOP Myth #4: GUI’s Make OOP Difficult. Many
claim that the paradigm shift to graphical user
interfaces (GUI) makes OOP development
difficult for long time developers. Karl Steinle,
president and CEO of Concepts Dynamic Inc.
is quoted in the January 1995 issue of Software
Magazine, “With the old programming meth-
ods, the programmer directed the user with
the programmer’s procedures. In the OOP
arena, it’s reversed because the system is event-
driven. For the development staff, this is a
challenge. The programmers have to change
the way they think.”

The Reality: OOP and GUI’s Are Different Topics.
While it’s true that GUIs graphical user inter-
faces pose a severe challenge to procedurally-ori-
ented programmers, this issue is not necessarily
tied directly to OOP development. The confu-
sion arises because most modern GUI develop-
ment tools are also object-oriented in nature.

As the name implies, a graphical user interface
has to do with the interface portion of an appli-
cation, that is, the part the user sees. While the
interface is an important part of any applica-
tion, it’s not the only part. OOP concepts have
to do primarily with the underlying structure
and foundation of an application’s code, not its
user interface.
The reality is that GUI concepts make creating
a GUI application difficult, regardless of the
underlying coding techniques. Condemning
OOP because creating a good GUI is difficult
is like discounting the skills of a world-class
chef because she happens to cook a dish made
from your most-hated vegetable.

OOP tools such as Delphi actually can
make creating a GUI application much easi-
er. GUI environments are designed around
the concept of end-user manipulation of an
application. OOP development treats code
and data as if they were real, tangible
objects with physical properties and abilities
that can be manipulated. Therefore, the
OOP style of development fits in very well
with creating GUI applications. The best
GUI development tools support OOP pre-
cisely for this reason.

Delphi’s integrated development environ-
ment (IDE) is specially constructed to assist
programmers who are new to GUI applica-
tion design and to OOP. The Object
Inspector visually surfaces the biggest area of
confusion for new GUI developers — the
idea of event-driven programming. The
Object Browser is particularly useful for
people new to the OOP concepts of inheri-
tance and polymorphism.

OOP Myth #5: Anything with “Objects” is OOP.
A lot of hype exists about OOP. This new
buzzword is the development rage of the
90’s. Many vendors try to jump on the OOP
bandwagon by simply declaring that their
products are object-oriented. “We have on-
screen objects,” they say. But do those
objects encapsulate behaviors as well as dis-
play properties, or does the code simply sit
at the application level? “We support inheri-
tance down to the second level.” Huh? True
inheritance has no regard for the number of
levels of inheritance. Sounds more like sup-
port for marketing concepts than for OOP
concepts.

The Reality: What Counts is Encapsulation,
Inheritance, and Polymorphism (Again). Always
keep in mind that reuse is the ultimate goal
of OOP. Any system that does not fully sup-
port all three major concepts is not truly
object-oriented. Some development tools
support one or two of the concepts, but not
all three. These systems should be classified
as object-based, not object-oriented. Some
tools actually have no support for OOP at
all. They only have so-called “on-screen
objects” that are merely visual representa-
tions — graphical widgets rather than true
objects in the OOP sense.

Good examples of object-based development
tools for the PC are Paradox for Windows
(no inheritance), Access (only partial encap-
sulation and no inheritance), and
PowerBuilder (inheritance cannot be used
on Data Windows). True OOP systems
include Borland C++, Delphi, dBASE for
Windows, Visual C++, NextStep, and the
Taligent Application Environment.
Delphi INFORMANT ▲ 15

Figure 13: An example of the DBNavLite class (visible hints and
fewer buttons).

On The Cover
area, far more people benefit from design advances than just a
few engineers.

The same holds true for creating and using software compo-
nents through OOP. Because “ordinary mortals” can inherit
the work done by the more technical people in your organiza-
tion, you can leverage that technical talent throughout your
entire enterprise.
Classes vs. Objects
You need to maintain a clear distinction between what a class is
and what an object is. Although they are intimately related,
code that is placed in a class will have radically different effects
than application code that operates on run-time objects. The
table in Figure 14 should help to keep these differences straight.
Figure 14: Classes versus objects.

Usage Creation Process Coding Methodology

Design-Time Blueprint Sub-Classing Programming by Exception

Run-Time Operation Instantiation Programming by Properties

Class
Object

Mark Ostroff has over 16 years experience in the computer industry. He began by program-
ming minicomputer medical research data acquisition systems, device interfaces, and
process control database systems in a variety of 3GL computer languages. He then moved
to PC’s using dBASE and Clipper to create systems for the US Navy and for IBM’s COS
Division. He volunteered to helped create the original Paradox-based “InTouch System” for
the Friends of the Vietnam Veteran’s Memorial. Mark has worked for Borland for the past 5
years as a Systems Engineer, specializing in database applications.
Programmers new to OOP have often complained that changes
they made “magically” disappeared or reset themselves when they
exited their applications and restarted them. They also became
confused when changes to an object don’t do what they thought
they would do. This confusion is especially apparent when devel-
opers want to make a copy of an object.
JUNE 1995
You should constantly ask if you want to change the object’s blue-
print at design time, or change the object itself at run-time. For
example, to make a copy of an object, you should instantiate a new
object of the same class and then copy the values of the salient
properties from the old object to the new instance. If instead you
want to make a similar blueprint from which to instantiate objects,
you should create a new class by sub-classing the original.

How you code each object is also subtly different. With a class
definition, you want to get in the habit of programming by excep-
tion, that is programming only the differences. You accomplish
this through the intelligent use of inheritance.

Run-time coding of object behavior should be accomplished via
a technique known as programming by properties. That is, your
classes should be designed in such a way that run-time code can
easily affect the behavior of an object instance simply by chang-
ing the values of its properties.
Conclusion
In summary, remember these key points about OOP:
• The ultimate design goal of any OOP development is to create

reusable software components.
• Regardless of the language tool used, the hallmark of true

object orientation is full support for encapsulation, inheri-
tance, and polymorphism.

• Encapsulation provides code and data variable safety.
• The combination of inheritance and polymorphism provides

increased programmer productivity. ∆

The demonstration forms referenced in this article are available
on the 1995 Delphi Informant Works CD located in
INFORM\95\JUN\MO9506.
Delphi INFORMANT ▲ 16

JUNE 1995

The Triumph of Objects
Delphi’s RAD Approach to Object-Oriented Programming

On The Cover
Delphi / Object Pascal

By Zack Urlocker

D
t
A
m

S
o
c

W
t

L

uring the development of Delphi, one of our goals at Borland was to
create a Rapid Application Development (RAD) environment that
wouldn’t hold you back. We wanted to ensure there weren’t limitations

hat stopped developers from doing something complex or out of the ordinary.
fter all, if you’re in the business of creating custom applications, the funda-
ental assumption is that unique tasks require custom code to complete.

everal developers said the first generation of RAD tools often ran out of gas — leaving them with
nly about 80% of the application completed. In many cases, applications had to be recoded either
ompletely or partially, in C or C++, in order to be completed and run with acceptable performance.

ith Delphi, we wanted to provide the best of both worlds — give developers a program that featured
he rapid development of a 4GL, with the performance and flexibility of an optimizing 3GL compiler.

uckily, we had a secret weapon: Objects.
Surprised? If you thought object-oriented programming (OOP) was something for
rocket scientists, you’re in for a pleasant surprise. In the early days, OOP was defi-
nitely a lot less visual and required greater discipline — but the payoff was still
there. Now it’s more visual and the payoff is even sweeter.
Do You Remember When?
My first object-oriented program for Windows was written on a 640KB 80286 with
a 10MB hard disk and CGA graphics. I was running Actor 1.0 on Windows 1.0 — a
beta of a beta, if ever there was one. At that time, the only other way to develop
Windows applications was to use the outrageously difficult and expensive combina-
tion of Microsoft C and Windows SDK. I’d done a bit of graphical user interface
(GUI) programming and wasn’t eager to write hundreds of lines of code to deal with
every Windows message (display context, handle, and all the low level details
required). Actor was a very attractive alternative because it enabled me to build
Windows applications from pre-existing components. You still had to write code to
work in Actor, but the library of pre-built objects gave it a significant head start. Also,
the ability to create new objects made it possible to easily extend the environment.

Of course, the industry has progressed a lot since then. Windows no longer runs
on floppy disks, display adapters support graphics modes that require a magnify-
Delphi INFORMANT ▲ 17

On The Cover
ing glass, and Microsoft has eradicated all UAEs in Windows in
favor of general protection (GP) faults. We also now accept that
hand-coding Windows applications using C and Windows API
is generally to be avoided. Heck, if God wanted everyone to pro-
gram in C, he would have given us pointers instead of fingers.
But I digress.
Your First Object
For a lot of programmers, Delphi’s object-oriented environment
is a new experience. We purposefully created Delphi so objects
can be used easily with the user-interface builder without really
having to know the details. First-timers can write a lot of code
and complete many tasks without worrying about how the
objects work. (You don’t have to know pointers, inheritance, or
constructors and destructors to get started.) Then, when you’re
ready to take your programming skills to the next level, the full
power of OOP is already at your fingertips.

If we built Delphi right, hopefully many developers will be
inspired to learn the concepts of OOP — namely inheritance,
encapsulation, and polymorphism — and begin creating custom
objects. After all, since Delphi is written in Delphi, there is no
distinction between the components supplied and those built. So
if you want to add some new control component that offers high
performance WinG graphics, cool MIDI support, a rich text edi-
tor, or a better database grid, go ahead, you can do it.

But don’t forget, you’re not limited to creating visual objects,
either. If you want to create new abstract objects that model cus-
tomers, accounts, widgets, or meteors — just do it. The bottom
line is simple: You can model whatever is needed in your appli-
cation development and then reuse it.
Zack Urlocker is Group Product Manager for Delphi at Borland International. He is a
frequent speaker at industry conferences on object-oriented programming. The views
expressed here are his own.
The Key Is Reusability
When you begin creating new objects in Delphi, you’ll want to
keep a few Object Lessons in mind. Most importantly, if you want
to create reusable objects plan ahead and design with reuse in
mind. Don’t build a complex application and then try to “pull
the objects out”. Instead, consider the objects needed and ana-
lyze the current problem. If you can identify “clusters” of related
data and functionality, these are good candidates for objects.
JUNE 1995
In the early stages of your design, select the data and functionali-
ty required in an object and don’t worry too much about inheri-
tance. First determine what the object requires, then decide
where to get that functionality. In many ways, inheritance is a
balancing act between getting the right functionality and inter-
face, while attempting to limit the amount of superfluous bag-
gage. Don’t make the mistake of inheriting 20 unneeded capabil-
ities just to get one piece of useful code.

As you create new objects, try to make them consistent with
existing protocols or ways of interacting. For example, if you want
to create a new high-capacity TRichText control in Delphi, it
would be wise to implement the same key properties and meth-
ods found in TMemo (such as Text, Alignment, SelectAll,
GetSelTextBuf, CopyToClipboard, and so on). You should also
make sure the methods take the same parameters as an existing
TMemo control. That way the new control is “plug compatible”
with the existing one. This doesn’t mean you should base your
implementation of a Rich Text editor from the existing TMemo
class. Actually, you’d probably want to inherit from much higher
in the hierarchy.

It often takes two or three iterations before an object is fully
reusable. After building a new object with all the properties,
methods, and events you think it needs — you may discover it
needs just a bit more code. So before you finalize your object, try
using it in a complex application. Better yet, get someone else to
test and reuse it. If you find code that is frequently implemented
by users of your object, try to determine a way to generalize the
code and apply it as a method that’s built in. As we built Delphi
and the Visual Component Library (VCL), there were many cases
where new methods or properties were added to objects only after
beta testers put them into real world circumstances. ∆

Now go build some objects!
Delphi INFORMANT ▲ 18

JUNE 1995

VB to Delphi
10 Things You’ll Want to Know to Get Started Fast

Informant Spotlight
Delphi / Object Pascal / Visual Basic

By Brian Johnson
Y ou bought Delphi because it’s a RAD (rapid application development)
tool. You want to create stand-alone executables and you’re not satisfied
with the performance of interpreted p-code. You’ve got C/C++, but you

can’t stand using it because you spend more time trying to learn new things
than building applications. If these are some of the reasons you wanted to
begin developing applications in Delphi, then this article is for you.

What follows are 10 topics you’ll encounter when moving from Visual Basic (VB) to Delphi.
There isn’t a detailed explanation of each topic, instead we’ve constructed a down-and-dirty
overview that will get you coding and building applications right away.
Lay of the Land
Each Delphi Project is divided into at least three of the following files:
• the .DFM extension indicates a binary file containing form information
• .PAS indicates an Object Pascal unit file
• .DPR indicates the Delphi project file
• .RES indicates a Windows resource file
• .OPT indicates the options file (edited via Options | Project, this file saves compiler, linker,

and other project options)
The .DFM file is binary and can be manipulated through the Delphi IDE. It
can also be opened and viewed as a text file by selecting File | Open from the
main menu. The .PAS files are text files that can be edited within the Code
Editor in the IDE, or using a text editor. The .DPR file is also a text file and
may be similarly edited.

Each .PAS file in a project is known as a unit. The unit itself is broken into
blocks containing statements. The operational code is contained within the
unit...end block. Your procedures are declared below the type keyword and
used in the implementation section. Placing an object on your form and
using the Object Inspector to access an object’s events does most of this for
you.

To declare variables within a procedure, you must add a var keyword before
the begin keyword within the procedure. Variables declared outside the
implementation section in the unit’s var section become global to the unit
(see Figure 1).
Delphi INFORMANT ▲ 19

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs;

type
TForm1 = class(TForm)

Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;
y: LongInt; { Global variable }

implementation

{ $R *.DFM }

procedure TForm1.Button1Click(Sender: TObject);
var

x: integer; { Local variable }
begin
end;

end.

Figure 1: A sample Object Pascal unit file. Note that some variables
are declared in the unit’s var section — above the implementation
section — making them global to the unit.

Informant Spotlight
Variables
In VB, you may be accustomed to coding your application
using automatic variables. That is, you might write:

x = “This is a text variable”
y = 500
z = Y / 2.5

In VB your variables are “automatic” because they can literally repre-
sent nearly any value you wish to use. Because it’s a strongly typed
language, things aren’t quite that simple in Object Pascal. Data must
be stored in precisely defined (or sized) locations you create within a
program. You do this by declaring your variables by type. That is,
they are explicitly declared (Option Explicit in VB). When working
with compatible data types, this usually presents no problems. For
example, consider this Object Pascal code fragment:

var
x, y, z: integer;

begin
x := y * z;

end;

However, if we change our equation statement a bit:

x := y / z;

we run into problems. This statement generates an error because
a quotient produced using the / operator is always of type real.
(Note: An integer divided by an integer using the div operator
JUNE 1995
is of type integer.) To fix this, our variables must be declared a
little differently:

var
y, z : integer;
x : real;

begin
x := y /z;

end;

No error here. But if we want to plug x into another equation
that returns an integer, we must make the data types compati-
ble. In this case we’ll use the Trunc function:

var
y, z: integer;
x: real;

begin
x := y /z;
y := Trunc(x) * z;

end;

(You could also use Rnd or another truncating function.) Now,
what if we want to output some of this to the screen? Because
the Label component’s Caption property requires a string, we
need to change any integer data to strings. This can be done
with the IntToStr function:

Label1.Caption := IntToStr(y);

Of course if we want to get the label value and turn it into a
number, we can do that too:

y := StrToInt(Label1.Caption);

Finally, to convert our real value (x) into a string, we simply nest
the functions:

Label1.Caption := IntToStr(Trunc(x));

Remember there are many factors to consider when working
with explicit data types. Learning the various data types, and
how they can be converted (cast) into other types, will help you
to avoid many mistakes.
Conditional Terminology
Conditional terminology in Delphi is similar to that of VB. For
example, you can use if statements to test the truth of a condition:

if CheckBox1.Checked = True then
Object Pascal statement

else
Object Pascal statement;

It’s important to note that since there is only one statement for
the then and else portions of this if statement, a semicolon is
required only after the terminating else clause. If you need mul-
tiple statements within the then portion of an if statement (for
example), you must use a begin...end block:

if CheckBox1.Checked = True then
begin

Object Pascal statement 1;
Object Pascal statement 2;
Delphi INFORMANT ▲ 20

Informant Spotlight
end
else

Object Pascal statement;

In other words, there is no “EndIf ” keyword in Object Pascal
as there is in VB. You can also use the case statement to check
conditions:

var
NumMonth : integer;
Month : string;

begin
{ Function returns month based on ordinal number. }
case NumMonth of

1 : Month := January’;
2 : Month := February’;
{ and so on. }

end;
end;

The case statement is very handy if you have a number of possi-
ble outcomes of the same variable type.
File Functions
File I/O with Delphi components is fairly straightforward.
For example, to load a file into a TMemo component, simply
use the LoadFromFile method, passing the name of the file as
the argument. Here’s an example where FileName is a variable
of string type:

Memo1.Lines.LoadFromFile(FileName);

Conversely, to write changes to a file, use the SaveToFile method:

Memo1.Lines.SaveToFile(FileName);

The same technique works for the contents of OLE containers
and graphics components. As a VB programmer, you’ll find a
surprising number of operations can be called directly from with-
in Delphi. As a rule, and to save some work, try finding a built-
in method for performing an operation before venturing into the
Windows API for a solution.
Accessing Other Forms
This looks pretty straightforward. To open a second form from
within your application you just add Form2.Show, right? Well, yes
and no. Any external code — even if it’s part of the current project
— needs to be referenced in the uses section of the main unit.
Therefore, you’ll need to add Unit2 to Unit1’s uses statement.

Further, to access Unit1 from Unit2, you must declare it in Unit2.
Simply insert a uses clause in Unit2’s implementation section and
reference it from there.
Making API Calls
Note there are references to WinTypes and WinProcs in a form
unit’s uses section. These files contain the information necessary
to call Windows API functions in your application. In VB you
might be used to declaring your functions before calling them.
These two sections do this for you, and make calls to the
Windows API straightforward.
JUNE 1995
Look at the WINPROCS.PAS file in your
\DELPHI\SOURCE\RTL\WIN directory to see how these rou-
tines are declared. For example, the declaration for the Windows
API function, GetFreeSystemResources is:

function GetFreeSystemResources(SysResource: Word): Word;

Since it’s been declared for you, calling the function is simple:

begin
Label1.Caption :=

IntToStr(GetFreeSystemResources(
GFSR_SYSTEMRESOURCES));

end;

Of course, you still need to be knowledgeable about the
Windows API to use it effectively (and stay out of trouble).
However, Delphi provides excellent on-line help to the entire
Windows API. Just select Help | Windows API.
Accessing Interrupts
In VB you may have used a DLL to access DOS interrupts. This is
unneccessary in Delphi, and you don’t need to know any assembler
to access system data. All you need is a good reference to the DOS
internals. First, declare the variables you’re going to use to hold the
returned data:

var
SectorsPerCluster,
AvailClusters,
BytesPerSector,
TotalClusters: Word;

Then you must call the interrupt function using embedded assem-
bler statements. In Object Pascal, the asm keyword is used:

asm
mov ah,36h { Get disk space }
mov dl,3 { Select drive C }
int 21h

mov word ptr SectorsPerCluster,ax
mov word ptr AvailClusters, bx
mov word ptr BytesPerSector, cx
mov word ptr TotalClusters, dx

end;

Then we can assign the variables to Delphi component properties:

Edit1.Text := IntToStr(SectorsPerCluster);
Edit2.Text := IntToStr(AvailClusters);
Edit3.Text := IntToStr(BytesPerSector);
Edit4.Text := IntToStr(TotalClusters);
Edit5.Text := IntToStr(LongInt(SectorsPerCluster) *

BytesPerSector * TotalClusters);
Edit6.Text := IntToStr(LongInt(SectorsPerCluster) *

BytesPerSector * AvailClusters);

Notice that in the Edit5.Text and Edit6.Text assignments,
that we must typecast one of our variables so we don’t overflow
the buffer holding our data.

If you’ve never accessed DOS internals, you’ll find that they can
hold a wealth of information. They can also be quite dangerous
Delphi INFORMANT ▲ 21

Informant Spotlight
if you’re not careful. DOS instructions deal with everything from
disk I/O, to low-level disk operations such as formatting, so dou-
ble-check your numbers when accessing data to be sure you’re
calling the correct interrupt.

And don’t create too much work for yourself. Delphi already
encapsulates a lot of this functionality (for example, the Object
Pascal DiskSize and DiskFree functions).
Accessing a DLL
Accessing a DLL in Delphi requires a decision. You must choose
whether to load the DLL at the same time the program runs (a
static import), or when the function is required (a dynamic import).
Your decision may depend on how the DLL is used in the applica-
tion. Using a static import is the easiest way to access a DLL —
and the one you probably used most often in VB.

Static importing of a DLL function requires declaring the func-
tion as external (i.e. using the external directive) and making a
simple call to the routine. Let’s say we have a DLL named
DISKINFO.DLL with a routine named diFreeSpace that
returns disk information based on an integer value (the drive
number) passed as an argument:

{ In the implementation section }
function diFreeSpace(Drive: integer): LongInt;

external ‘DISKINFO’;

Notice that “.DLL” is not appended to the ‘DISKINFO’ specifica-
tion; it’s implicit in the declaration. To return our information we
simply make the call and pass the drive number to the function:

procedure TForm1.Button1Click(Sender: TObject);
begin

Label1.Caption := IntToStr(diFreeSpace(3));
end;

Remember you need to specify the far call model when import-
ing a procedure or function. To do this, open the Project
Options dialog box by selecting Options | Project. At the
Compiler page, select Force far calls in the Code generation
area. Or alternatively, you can add the far directive to a function
declaration. For example:

function diFreeSpace(Drive: integer): LongInt;
far; external ‘DISKINFO’;

If you have favorite libraries that you access often, consider creat-
ing a declaration file. (Again, see the WINPROCS.PAS file for
an example.) Afterwards, you’ll only need to add the name of the
declaration file to your uses clause to call its routines.
Brian Johnson is a freelance writer and programmer in Orlando,
Florida. He can be reached on CompuServe at 72322,3611.
Adding Controls
If you want to add a VBX control to the Component Palette, select
Options | Install Components to display the Install Components
dialog box. Select VBX to insert the VBX you wish to add. [For a
complete description of adding a component to Delphi’s
Component Palette, see Gary Entsminger’s article “Approaching
Components” in the Premiere issue of Delphi Informant.]
JUNE 1995
Like C/C++, Delphi can only use Level 1 VBX components. This
should not be a problem for most VBXes — they are supposed to
be written to be backward compatible with prior VB versions.
However, you may have a problem with data access controls
because the database features of VB weren’t added until version 3.0.
Exception Handling
Exception handling allows your program to recover from errors that
might otherwise cause problems or instability on the user’s system.
An exception is raised when an error occurs. Exception checking is
not required for every block of code that you write. However, it’s
highly recommended in situations where you allocate system
resources, or where the outcome may cause a problem within the
program. In Delphi, exception handling is implemented using the
try...finally or try...except block. For example:

var
x, y : real;

begin
y := 0;
try

x := 1 / y
except on EZeroDivide do

MessageDlg(Divide by Zero error’,
mtInformation,[mbOk],0);

end;
end;

[For an in-depth discussion of Delphi exception handling, see
Gary Entsminger’s article “Exceptional Handling” on page 23.]
GO Delphi
One of the best sources for information and components for
Delphi is the Delphi Forum on CompuServe. Also, a Delphi
news group on the Internet is planned. If you struggle with a
specific problem, you can bet another user has had the same
problem — and the answer may be on the forum.
Conclusion
In many ways, Delphi is an entirely new world for Visual Basic
programmers. However, the environments and language syntax
are similar enough to make the transition to Delphi fairly easy.
You can find information dealing with this transition in the
VB2DELPH.WRI file provided with Delphi. (It’s in the
\DELPHI\DOC directory.)

If you need to convert a large amount of VB code, you may
want to purchase the Conversion Assistant. [EarthTrek’s
Conversion Assistant product is reviewed on page 42.]

Delphi is the “visual” C++ that VB programmers have been wait-
ing for. With a little work, a Visual Basic programmer can be up
to speed in Delphi quickly. ∆
Delphi INFORMANT ▲ 22

JUNE 1995

Exceptional Handling
Trapping Run-Time Errors with an
Exception-Handling Component

They looked as if they’d just come off the stage
or had arrived here straight from a costume ball.
Their headbands, patterned peploses, hairdos, bracelets,
and necklaces were all in imitation of the robes
of women of Delphi: they were slender and carefree. — Pawel Huelle

The Way of Delphi
Delphi / Object Pascal

By Gary Entsminger
U nlike its ancestor, Borland Pascal 7.0, Object Pascal, the underlying
language of Delphi, has an excellent mechanism for handling error
conditions that can arise in code. Delphi uses exception handlers to

respond to these errors.

An exception in Delphi is both an error condition (something that halts an application’s flow of
execution), and an object (a type that contains information about the error condition). By handling
exceptions you can prevent your applications from crashing after an exception occurs.

In this month’s article, we’ll discuss creating a general-purpose exception handler component
that you can “plug into” your Delphi applications. This exception handler
handles RTL (run-time library) integers and floating point math excep-
tions. You can also easily modify it to handle other exceptions.
Exception Handling
An exception handler is code that responds to a specific exception or error
that occurs within a protected block of code. If you don’t protect code, and
an exception or error occurs, Delphi will generate an error message and
abandon execution of the code block that generated the error. Although
your application might not crash at this point, this is definitely not how
you want it to behave.

In general, you can protect code in two ways: within a try...finally block
or a try...except block. A try...finally block establishes a resource-protec-
tion block. Use a try...finally block to recover from an exception and free
any of the resources that were allocated by the application before the
exception occurred. Without a try...finally block, memory allocated to
resources may be lost.
Delphi INFORMANT ▲ 23

The Way of Delphi
For example, consider the following code, a button click event
procedure:

procedure TForm1.Button2Click(Sender: TObject);
var

Point1: Pointer;
X, Y: Real;

begin
X := 0;
Y := 0;
GetMem(Point1,1024); { Allocate 1KB of memory. }
X := 10 / Y; { This generates an error. }
ShowMessage('Continuing'); { Execution never gets here, }
FreeMem(Point1,1024); { or more importantly, here. }

end;

This code uses the GetMem procedure to allocate a 1KB block of
memory. The address of the block is referenced by the pointer,
Point1. In this procedure, you might want to protect the
GetMem procedure. If you try to allocate a memory block, and
there isn’t enough free space in the heap (where dynamic vari-
ables are stored) to allocate the new pointer, GetMem generates a
run-time error.

The try...finally block can solve this kind of problem. Consider
the following revised button click event procedure:

procedure TForm1.Button1Click(Sender: TObject);
var

Point1: Pointer;
X, Y: Real;

begin
X := 0;
Y := 0;
GetMem(Point1,1024); { Allocate 1K of memory }
try

X := 10 / Y; { This generates an RTL floating point
error }

finally
ShowMessage('Continuing'); { Execution DOES get here }
FreeMem(Point1,1024); { Despite the error }
{ Optionally, do something about exception here, }

end;
{ or here }

end;

Placed in the try part of a try...finally block, the assignment to X
generates an RTL floating point exception. If the application ter-
minates at this point, the memory allocated by GetMem is lost
because code execution never reaches the FreeMem procedure. In
this case however, execution does continue after the exception,
and the memory allocated for the pointer can be recovered by
the FreeMem procedure.

The statements in a try...finally block execute normally unless
an exception occurs. If an exception occurs, the finally part of
the try...finally block executes. In fact, the statements in the
finally part of a try...finally block always execute, even if no
exception occurs.

Note that the try...finally block doesn’t do anything about the
exception. If an exception occurs in a try...finally block, execu-
tion proceeds to the finally part of the block, then exits the
block. At this point you can optionally handle the exception.
JUNE 1995
If you’re new to Delphi exception handling, you might become
confused when you try to test your exception handlers. When
you’re working within the Delphi development environment,
Delphi gets first crack at exceptions and reports the error. You
must then use either the Run, Step Over, or Trace Into com-
mands to actually see your exception handler work.

The best way to test your exception handlers is to exit Delphi
entirely and run your application as a stand-alone .EXE. This way,
you won’t be bothered by Delphi’s good-intentioned interruptions.
The try...except Block
If you want to handle exceptions and don’t need to worry about
resources or dynamic variables, you can use a try...except block
to protect your code.

Within the try part of a try...except block, statements execute
normally unless an exception occurs. If an exception occurs, exe-
cution jumps to the except part of the try...except block.
However, if no exception occurs, the block ends without execut-
ing the code in the except or else parts of the protected block.
Thus, a try...except block won’t necessarily protect resources.

Within the except part of the block, exception handling state-
ments must be in the form:

on <type of exception> do <statement>

In other words, you evaluate individual exceptions.

If none of the on...do statements apply to the current exception,
the default exception handler executes. Eventually, after a specific
handler or the default handler handles the exception, the
try...except block ends.

In short, in a try...finally block, execution resumes within it after
the exception. In a try...except block, execution does not contin-
ue within the block after the exception.

The try...except block doesn’t automatically give you information
about an exception. However, you can obtain it from the excep-
tion instance if you need it. You access the exception instance
through an alternative form of on...do:

on <temporary var...specific exception instance> do

This alternative form requires that you declare a temporary vari-
able to hold the exception instance. The exception handler you
develop next shows how to use the exception instance.
Setting Up the Exception Handler
Setting up a general purpose try...except exception handler is rel-
atively easy. You start by embedding the code you want to pro-
tect within an exception-handling block that begins with the
reserved word, try. Then you specify your code’s response to the
exception after the reserved word, except. Here’s how a
try...except block might look:
Delphi INFORMANT ▲ 24

The Way of Delphi

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs;

type
TExceptionHandler1 = class(TComponent)
private

{ Private declarations }
try
{ Statements to protect. }

except
{ Exception-handling statements. }

end;

If an error condition (an exception) occurs while executing a
statement in the try part, your application automatically creates
an exception object. Then it begins executing statements in the
except part of the block.

If the application locates an exception handler that handles the
exception, it executes the statement, then automatically destroys
the exception object. Finally, execution continues at the end of
the try...except block. As noted earlier, execution does not con-
tinue within the protected block.

Any procedures or functions your code calls in the try part are also
protected by this try...except block. For example, if code in the try
part calls a procedure that doesn’t define a try...except block, and
an exception occurs, execution returns to this try...except block
and tries to handle the exception in this except part.
Figure 1 (Top): To access the Component Palette, select File | New
Component from the menu. Now you can assign a class name, derive
from an ancestor object, and designate a Component Palette page.
Figure 2 (Bottom): Code generated by the Component Expert when
you create the TExceptionHandler1 component.

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('WayOfDelphi',[TExceptionHandler1]);
end;

end.
An Exception Handling Component
Although you can handle exceptions by adding new exception
handling code each time you protect code, you can alternatively
create a general-purpose exception handler. By making this gen-
eral-purpose exception handler an object, you can modify and
expand it. By making the exception handler a component, you
can add it to the Component Palette.

The key to this exception handler is a general-purpose
method (a procedure) that evaluates the exception. When an
exception occurs in any try...except block, the application
calls this general-purpose method to evaluate and handle the
exception. This exception handler component publishes a
property, called Active, that indicates whether the exception
handler is active (available).

Begin a new project by selecting File | New Project from the
menu. Delphi will automatically create a form and unit. We
don’t need them to create the exception handler, so close
them without saving them. Then save the project as
TExcept1.DPR.
Deriving a New Component
Use the Component Expert to derive a new component from
TComponent. As shown in Figure 1, enter the following parame-
ters in Component Expert dialog box:
• Class Name: TExceptionHandler1
• Ancestor type: TComponent
• Palette Page: WayOfDelphi

Click on the OK button to accept the entries. The
Component Expert automatically creates the Object Pascal
code shown in Figure 2 in a unit called Unit1. Save this file
as TExcept.PAS.
JUNE 1995
Creating a Property
Next, modify this generic component by adding a property.
Begin by declaring an object field (variable) in the private decla-
ration of the class to store the data for the property:

private
FActive: Boolean;

The following Object Pascal statement creates a property (Active)
with a value that can be read from and written to the FActive field:

published
property Active: Boolean read FActive write FActive;

Next, declare a method (a procedure), OnDo, in the public
declaration. This method will accept an exception object and
determine its type of exception. Make it a virtual method to
Delphi INFORMANT ▲ 25

The Way of Delphi

Figure 3: Code that tests for run-time library (RTL) exceptions.

procedure TExceptionHandler.OnDo(E: Exception);
begin

{ Integer math exceptions }
if E is EDivByZero then

ShowMessage('EDivByZero')
else if E is ERangeError then

ShowMessage('ERangeError')
else if E is EIntOverFlow then

ShowMessage('EIntOverFlow')
{ Floating point math exceptions }
else if E is EInvalidOp then

ShowMessage('EInvalidOp')
else if E is EZeroDivide then

ShowMessage('EZeroDivide')
else if E is EOverflow then

ShowMessage('EOverflow')
else if E is EUnderflow then

ShowMessage('EUnderflow')
else

ShowMessage('Unhandled Exception.');
end;
allow future descendants to override it:

public
{ Public declarations }
procedure OnDo(E: Exception); virtual;

Here’s the complete type description for the TExceptionHandler
component:

type
TExceptionHandler = class(TComponent)
private

{ Private declarations }
FActive : Boolean;

protected
{ Protected declarations }

public
{ Public declarations }
procedure OnDo(E: Exception); virtual;

published
{ Published declarations }
property Active : Boolean read FActive write FActive;

end;
OnDo and the Is Operator
The key to handling each exception lies in the OnDo method.
OnDo evaluates the exception, handles it (if it can) and then returns
control to the try...except block that invokes it. Since an exception is
an object type, OnDo uses the is operator to evaluate it.

The Object Pascal is operator is a dynamic type checker. It
determines whether the run-time type of an object reference
belongs to a specific class. For example, the following line of
code tests whether the exception, E, belongs to the class,
EDivByZero:

if E is EDivByZero then
{ Do Something }
ShowMessage('EDivByZero')

The OnDo method of our exception handler component (see
Figure 3) consists of a series of tests for the RTL integer and
floating point exceptions.

Note that although a case statement is often more conve-
nient to use than a nested series of if statements, we can’t
use it here because it doesn’t test class types. A case state-
ment can only test integers, chars, enumerated types, and
subrange types.

Note also that after each test, OnDo simply displays an error
message. However, this can be sufficient for application recovery
(and is sufficient in the test application presented later in this
article). However, you could easily create a more complex OnDo
procedure to handle errors in more specific ways.
Adding the New Component to the Palette
Now select Options | Install to access the Install Component
dialog box. Click the Add button to access the Add Module dia-
log box. Select the Browse button to locate the TExcept.PAS file
from the appropriate directory. Select TExcept.PAS to add and it
will appear at the bottom of the Installed Units list box in the
JUNE 1995
Install Components dialog box. Its path will be added to the
Search path edit box.

Finally, click OK to accept the changes. The library recompiles
and the Component Palette is reconfigured, showing the new
WayOfDelphi page and the new component (see Figure 4).
Invoking Component Methods
Finally, let’s create a form that tests the exception handler. Select File
| New Form to create a new blank form. From the Standard page,
add two Button components, and from the WayOfDelphi page add
the TExceptionHandler component to the form. Then, change the
captions of the buttons to Integer exception and Floating
point exception. For this example, change the Caption property
of the form to Exception Handler Test. Figure 5 shows this
form in design mode.

Select the TExceptionHandler component and note the pub-
lished properties, Name, Tag, and Active (see the Object
Inspector in Figure 6).

Next, implement the OnClick events for the two buttons. The
first button click event generates an RTL integer exception and
checks the exception handler’s Active property. If Active is set to
True, it sends a message to the exception handler’s OnDo method:

procedure TForm1.Button1Click(Sender: TObject);
var

Num, X : Integer;
begin

X := 0;
try

Num := 9 div X; { Force an Integer exception. }
except on E : Exception do

if ExceptionHandler1.Active = True then
ExceptionHandler1.OnDo(E)

else
ShowMessage('Custom Exception Handler not active.');

end;
end;
Delphi INFORMANT ▲ 26

Figure 6: The Object Inspector showing the properties for the
TExceptionHandler component.

Gary Entsminger is the author of The Tao of Objects, an Introduction to Object-Oriented
Programming, 2nd ed. (M&T 1995) and Secrets of the Visual Basic Masters, 2nd ed.

The Way of Delphi

Figure 4: The Component Palette
now has the WayOfDelphi page
with the new TExceptionHandler
component.

ExceptionHandler
Component

Figure 5 (Left): The new
form in design mode.
The second button click event generates an RTL floating point
exception and checks the exception handler’s Active property. If
Active is set to True, it sends a message to the exception handler’s
OnDo method:

procedure TForm1.Button2Click(Sender: TObject);
var

Num, X : Double;
begin

X := 0;
try

Num := 9 / X; { Force a floating point exception. }
except on E : Exception do

if ExceptionHandler1.Active = True then
ExceptionHandler1.OnDo(E)

else
ShowMessage('Custom Exception Handler not active.');

end;
end;

The Object Pascal code for the TExceptionHandler component
and the demonstration application is shown in Listings One
and Two (beginning on page 28), respectively.

Figures 7 and 8 show this application at run-time. As mentioned,
remember to close Delphi prior to running the application.
JUNE 1995

Figure 7 (Left): By clicking on the Integer exception button, the dia-
log box displays this message. Figure 8 (Right): Likewise, by selecting
Floating point exception, the result is EZeroDivide.
Conclusion
Delphi’s exception handling capability is — well — exceptional.
And it offers variations depending on your needs. If you need to
protect resources, protect blocks of code with try...finally. If you
need to handle an RTL exception, use a try...except block. If you
need to access information about an exception instance, use the
alternative form of on...do.

Use this discussion and the TExceptionHandler component as a
basis for your exception handlers. For example, you might want to
allow users to access the Active property of the TExceptionHandler
component at run-time. This could enable them to turn the
exception handler on and off. Use your imagination. ∆

The component and demonstration application referenced in this
article are available on the 1995 Delphi Informant Works CD
located in INFORM\95\JUN\GE9506.
Delphi INFORMANT ▲ 27

(Sams, 1994). He is currently working on The Way of Delphi, an advanced Delphi book
for Prentice Hall, and is Technical Editor of Delphi Informant.

The Way of Delphi
Begin Listing One — TExcept.PAS

unit TExcept;

{ Generic exception handler component }

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls,Forms, Dialogs;

type
TExceptionHandler = class(TComponent)
private

{ Private declarations }
FActive : Boolean;

protected
{ Protected declarations }

public
{ Public declarations }
procedure OnDo(E: Exception); virtual;

published
{ Published declarations }
property Active : Boolean read FActive write FActive;

end;

procedure Register;

implementation

procedure TExceptionHandler.OnDo(E: Exception);
begin

{ Integer math exceptions }
if E is EDivByZero then

ShowMessage('EDivByZero')
else if E is ERangeError then

ShowMessage('ERangeError')
else if E is EIntOverFlow then

ShowMessage('EIntOverFlow')
{ Floating point math exceptions }
else if E is EInvalidOp then

ShowMessage('EInvalidOp')
else if E is EZeroDivide then

ShowMessage('EZeroDivide')
else if E is EOverflow then

ShowMessage('EOverflow')
else if E is EUnderflow then

ShowMessage('EUnderflow')
else

ShowMessage('Unhandled Exception.');
end;

procedure Register;
begin

RegisterComponents('WayOfDelphi',[TExceptionHandler]);
end;

end.

End Listing One
Begin Listing Two — Tstexcep.PAS

unit Tstexcep;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls,Forms, Dialogs, Texcept, StdCtrls;
JUNE 1995
type
TForm1 = class(TForm)

Button1: TButton;
Button2: TButton;
ExceptionHandler1: TExceptionHandler;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{ $R *.DFM }

procedure TForm1.Button1Click(Sender: TObject);
var

Num,X : Integer;
begin

X := 0;
try

Num := 9 div X;

except
on E : Exception do { Exception instance }

if ExceptionHandler1.Active = True then
ExceptionHandler1.OnDo(E)

else
ShowMessage

('Custom Exception Handler not active.');
end;

end;

procedure TForm1.Button2Click(Sender: TObject);
var

Num,X : Double;
begin

X := 0;

try
Num := 9 / X;

except
on E : Exception do { Exception instance }

if ExceptionHandler1.Active = True then
ExceptionHandler1.OnDo(E)

else
ShowMessage

('Custom Exception Handler not active.');
end;

end;

end.

End Listing Two
Delphi INFORMANT ▲ 28

JUNE 1995

The TField Class
Directing Stored Data with a Non-Visual Component

DBNavigator
Delphi / Object Pascal

By Cary Jensen, Ph.D.
T Field is a class of component that permits you to access and control data
stored in tables. Unlike many other components, TFields are not visual.
For example, you can place a DBGrid component (from the Data Access

page of the Component Palette) on a form, and it appears as an object that
can be selected, positioned, resized, and deleted.

TFields, by comparison, don’t appear on any of the Component Palette pages, and likewise can-
not be physically placed on a form. Furthermore, once they are created, they don’t appear on the
form. Only after you place a Table or Query component on a form, can you begin creating
TField components.

This article introduces the TField component and discuss its features. It will show you how to cre-
ate TField components and manipulate their properties.
What Are TFields?
A TField component is a descendant of the TComponent class. The TField component class
itself has descendants, one for each type of data that can be handled in a field. The relation-
Figure 1: The Object Browser showing the TField objects descending
from the TComponent object.
ships betweenTField, its par-
ents, and descendants are
depicted in the Object Browser
(see Figure 1).

In fact, you don’t actually work
with TField components.
Instead, you work with one of
the descendant objects of the
TField component class. For
example, using a Table object
you can create one TStringField
object for each text field in the
corresponding table. Although
you don’t use “pure” TField
components, for the purpose of
this discussion, all descendants
of this class will be referred to
generically as TField objects.
Delphi INFORMANT ▲ 29

DBNavigator
Although TField components are used to access information from
a table, they are significantly different from components that
appear on the Component Palette’s Data Access page. For exam-
ple, a DBEdit component may appear to be nearly identical to a
TStringField, but it’s actually quite different. Consider the Object
Browser shown in Figure 2. Notice that the TDBEdit component
is a descendant of the TControl class. On the other hand, both
TControl and TField objects descend from the TComponent class.
Figure 3: Designing a basic form to display table data.

Figure 2: The TDBEdit object is a descendant of the TControl object.

Figure 4: The current
Because TField and TDBEdit objects are descendants from different
parent objects, they have inherited different properties and methods.
For example, a TStringField object has an EditMask property that
permits you to control how data is entered in the field. This property
does not exist for DBEdit components. Conversely, a DBEdit com-
ponent has an OnDblClick event, which the TStringField does not.
.

.

.

Defining and Selecting TField Components
There are two ways to select a TField component: using the
Fields editor, or the Object Inspector. However, you must first
define a TDataSet object (TTable or TQuery). For this demon-
stration, it will be helpful to also create a TDBGrid component,
which in turn requires a TDataSource object.

Use the following steps to create an active TDBGrid for the
Delphi sample table named Employee:
1) Open a new project.
2) Place DataSource, Table, and DBGrid components on the form
3) Position them so the DBGrid is in the center, and the

DataSource and Table are at the top of the form.
4) Select DBGrid and set its DataSource property to DataSource1
5) Choose DataSource and set its DataSet property to Table1.
6) Set the Table component’s DatabaseName property to DBDEMOS

(This is a BDE alias that was created when you installed
Delphi. If this alias isn’t available, continue to the next step.)

7) Set the Table component’s TableName property to
EMPLOYEE.DB. (If the :DBDEMO: alias was not available,
include the DOS path when entering the table name. If you
used the default directory names when you installed Delphi,
this path is C:\DELPHI\DEMOS\DATA.)
JUNE 1995
8) Activate the database connection by toggling the Table com-
ponent’s Active property to True.
Your form should resemble Figure 3.

Note that the DBGrid displays data from
the DataSource object, which points to
the Table object that is connected to the
Employee table. Still, the TField compo-
nents haven’t been instantiated (created).
You can demonstrate this by selecting the
Object Inspector’s drop-down list (see
Figure 4). Notice this list contains only
the objects named Form1, Table1,
DataSource1, and DBGrid1 — no
TField objects.
Creating the instances of the TField
objects is very important. Until you do, you can’t manipulate

individual fields in the table pro-
gramatically. You instantiate the
TField objects using the Fields edi-
tor. There are two ways to display
the Fields editor. The easiest is to
double-click the Table object on
the form. Alternatively, right-click
the Table object and select Fields
editor from the displayed Speed
Menu. The Fields editor, shown in
Figure 5, is displayed.

Initially the Fields editor is blank — no field names are listed in
it. To add one or more fields, select the Add button. This causes
the Add Fields dialog box to be displayed (see Figure 6). It con-
tains a list of all fields not yet selected from the table pointed to
by the Table object. All the displayed field names are selected by
default. To create TField objects for each of these field names
select OK. To create TField objects for a subset of these fields,
highlight only those fields you want TField objects for, and click
OK. (Hold down C when selecting and de-selecting indivi-
dual fields.) For the current example, press OK to select all fields.

objects on the form.

Figure 5: The Fields editor.
Delphi INFORMANT ▲ 30

J

Figure 6 (Top): The Add Fields dialog box. Figure 7 (Bottom): TField
objects will be instantiated for all fields selected in the Fields editor.

DBNavigator

Figure 8 (Left): Once instantiated, the TField objects are selectable
from the Object Inspector. Figure 9 (Right): A TStringField’s properties
in the Object Inspector.
Once you have accepted the Add Fields dialog box, control
returns to the Fields editor, and the selected fields appear in the
Fields list, as shown in Figure 7. You can now close the Fields
editor (press A4or double-click the Control menu) to
instantiate TField objects for those selected fields.

Once you close the Fields editor, the DBGrid displays only
those fields you selected. Consequently, the Fields editor is use-
ful when you want to display only selected fields from a table.
Also, all the selected fields now appear as objects in the Object
Inspector’s drop-down list box (see Figure 8).

Now that you have created TField objects for your table,
you can access the properties and events for individual fields
in the table. To do this, use the Object Inspector to select a
field object. In this example, select the object named
Table1LastName. When you do, the properties of this
TStringField object are displayed in the Object Inspector, as
shown in Figure 9.

The TField objects can also be selected in the Object
Inspector using the Fields editor. To demonstrate this, double-
click the Table object to display the Fields editor again. Begin
by selecting one of the fields listed in this dialog box. Notice
UNE 1995
that once you select a field, its properties and events are dis-
played in the Object Inspector. Now select another field in the
Fields editor. Again, the Object Inspector updates itself and
displays this newly selected field’s properties and events.
Some Selected TField Properties
While all these properties are important, let’s consider a few
properties that have special implications for the fields dis-
played in the DBGrid. For example, you can use the Visible
property to control whether a field appears in the DBGrid.
This property is especially important when you have selected
all fields using the Fields editor (to instantiate a TField object
for each field), but want to display less than all of these fields
to the user (via the DBGrid). Any field not instantiated using
the Fields editor must be manipulated using the Fields proper-
ty of the Table component, instead of the TField object itself.

Another relevant property is ReadOnly. By default, all TField
objects are created with their ReadOnly property set to False.
Setting the ReadOnly property to True permits you to display the
data of a field to the user, but prohibits the user from changing
that value, regardless of the State property of the table. (The State
property determines if, and to what extent, a user can edit a table.)

There is yet another property that is very important when your
Object Pascal code needs to read or change the value in a field in
a table — the Value property. And, because it’s not a design time
or published property, it’s not listed in the Object Inspector.

To demonstrate the use of this property, add a Button to the
form from the Standard page of the Component Palette. With
the button selected, change its Caption property to &Show Last
Name. Now double-click the button and enter the following code
into its Button1Click procedure:

ShowMessage(Table1LastName.value);

and run the form. When the running form is displayed, click the
button. Your form will display a dialog box, as shown in Figure 10.
This dialog box displays the text that appears in the LastName field
Delphi INFORMANT ▲ 31

DBNavigator

Figure 10: A dialog box displays the last name of the current Employee
table record.
of the current record (which is the first record in this case). Accept
the dialog box and change the current record in the DBGrid. Now
click the button a second time. Again, the value displayed in the
LastName field of the current record is displayed. Close the dialog
box again.

While the code in the Button1Click procedure is simple, it
cannot work for every TField descendant. For example, a com-
piler error would be generated if you enter the following code:

ShowMessage(Table1EmpNo.value);

This is caused by the EmpNo field (in the table Employee) not
being an integer field, and the corresponding TField object being
of the type TIntegerField. Furthermore, the ShowMessage proce-
dure requires an actual parameter of the type String. Therefore,
it’s necessary to use the AsString property of the TIntegerField
object to display the EmpNo value in this dialog box. For exam-
ple, the following code will work:

ShowMessage(Table1EmpNo.AsString);

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, and author of numerous books on
database software. You can reach Jensen Data Systems at (713) 359-3311, or
through CompuServe at 76307,1533.
TFields without DBGrids
At this point, it must be emphasized that instantiating the TField
objects didn’t require either the DBGrid or DataSource — only
JUNE 1995
the Table object was required. At first, you may wonder why you
would ever want to instantiate a TField object when no DBGrid
exists. But, it’s through the TField objects that you can easily edit
and manipulate data in tables programatically.

This is demonstrated in the following steps. Begin by deleting
the DBGrid and DataSource objects from your form. Now select
the Standard page of the Component Palette and add two
Button objects to the form. Change the Caption property of the
first button to &Next and then double-click it to display its
OnClick event handler. Enter the following code into the dis-
played procedure:

Table1.Next;

Now select the second button and change its Caption property to
&Previous. Double-click it and add the following code to the
displayed procedure:

Table1.Prior;

Now press 9 to run the form. Once the form is running, press
the Show LastName button to display the value from the
LastName field associated with the first record in Employee
table. Accept this dialog box by pressing OK. Now click on the
Next button. If you then again click the Show LastName but-
ton, the contents of the LastName field associated with the sec-
ond record in the Employee table will be displayed.
Conclusion
TField objects permit you to access and control the data stored
in fields in a table. You use the Fields editor to instantiate TField
objects at design time for a given Table object. You can modify
the design time properties of these TField objects using the
Object Inspector. ∆
Delphi INFORMANT ▲ 32

JUNE 1995

A 3-D Label Component
Designing and Creating a Component Step-by-Step

From the Palette
Delphi / Object Pascal

By Jim Allen & Steve Teixeira
S o you want to build a Delphi Component? Notice the word build — it’s a
very appropriate verb to use in component design. Creating a compo-
nent entails a brick-by-brick building approach, where the bricks are

objects, variables, and type declarations. Once you’ve built your component
with these bricks, you have something — hopefully something that’s useful.

In this article, we’ll build a 3-D Label component called TLabel3D, using the criteria and techniques
discussed in the first installment of “From the Palette.” [See Jim Allen and Steve Teixeira’s article
“Component Basics” in the Premiere issue of Delphi Informant.] This article will show how easy build-
ing components can be, and delve into useful techniques of component design and programming.
The Idea
One way to brighten a form’s appearance is to use 3-D text. The standard technique of reproduc-
ing this effect is to layer three Label components that have the same caption. The bottom two
labels have their colors set to white and black to emulate light and shadow, and the top label has
any color (except white or black) as shown in Figure 1.

First, set the labels’ Transparent properties to True. Then you offset the position of the white label

from the top label by one position up and to the left, and the black label
one position down and to the right. This will give the group of labels a 3-D
effect. To give the labels a lowered appearance, simply switch the positions of
the white and black labels. You can also easily change the text by selecting all
three labels and editing the Caption property. This is a pretty cool idea, but a
little tedious to get right.

After using this technique a few times it becomes readily apparent that a
new component could be created to replace the whole process. It would be
a 3-D Label that could be dropped on a form and used as a single label
component. This would save time during development and you could use
this 3-D Label more often since it’s simple to use.
Checking the Criteria
In the last article we discussed the three criteria for a good component idea:
simplification, reusability, and uniqueness. These help you decide when to
create a component and if it will be useful. We’ll apply these criteria to our
3-D Label idea:
Delphi INFORMANT ▲ 33

Figure 1: The custom 3-D Label component at design time. This form
contains two 3-D Labels: one “raised” and one “lowered.” Creating
these effects by hand is tedious.

From the Palette
• Simplification. Would the 3-D Label component simplify a
difficult or complex task? Considering the earlier tedious
example of stacking three Label components, we know it’s a
“pain” so the answer is yes.

• Reuse. Would the 3-D Label component be easy to reuse?
Again, yes. It can be dropped on the form like any other
label component.

• Uniqueness. Would the 3-D Label Component be unique? Yes,
because there is no built-in component with these attributes.

Now that the idea has successfully passed all the criteria, let’s dis-
cuss how to implement it.
Getting Started
What do we want the 3-D Label to do? It should, of course, dis-
play text in a 3-D manner in both the raised and lowered style
(sounds like a great property to have, LabelStyle). There are a
number of ways to implement this 3-D effect:
• Have a component that declares three TLabel components and

sets the properties and positions of each to the appropriate
value. However, although this technique is object-oriented, it
JUNE 1995

Figure 2: This decision tree can help you decide from which class to desc
violates the essence of object-oriented programming (OOP).
• Create a resource file with a 3-D bitmap for each character in

the ASCII set and BitBlt the matching image to the screen.
(Somebody actually suggested this technique.)

• Change the Paint method of a derived TLabel component to
draw the text three times in the appropriate colors and posi-
tions. This sounds like the way to go because it’s simple and
doesn’t require extensive coding.

Also, we may want to add a button-like action to the 3-D Label.
That is, when you click on the label it recesses and then rises.
While this may be just a novelty, it could come in handy. We can
add another property called AsButton, that when set to True,
makes the 3-D Label function as a button.

The implementation of the button functionality isn’t as simple as
the 3-D effect, but it shouldn’t pose anything too difficult for us.
We’ll have to override the MouseDown, MouseUp, and
MouseMove methods of the parent class (if it has them) to get the
functionality we want.
Choosing a Parent Class
Choosing the right ancestor class can take a few seconds or a
couple of hours — depending on how well you know the Visual
Component Library (VCL). Sometimes the ancestor is obvious
because it only requires you to change or add to the functionality
of an existing component (e.g. a password TMaskEdit or a
default font setting on a TLabel).

In other instances, there are several classes that could be used as
the ancestor of the new component. Figure 2 shows a decision
tree to help you decide.
e

Understanding the Decision Tree
Examining the Decision Tree can help you answer the follow-
ing questions.

1. Similar VCL object? Is there an object in the VCL that’s similar
to the component you’re creating? Consider this question carefully
because most of the time the answer is yes, although some develop-
ers see their particular component as unique and therefore dissimilar
Delphi INFORMANT ▲ 34

nd your new component.

JUNE 1995

o
th

TCustomCheckBox

TCustomComboBox

TCustomControl

TCustomEdit

TCustomGrid

TCustomGroupbox

TCustomLabel

TCustomListbox

TCustomMaskEdit

TCustomMemo

TCustomOutline

TCustomPanel

TCustomRadioGroup

Figure 3: The custom classes.

From the Palette
to anything in the VCL. For
example, if your component is a
button type of control, then it
will descend from one of the but-
ton classes (e.g. TButtonControl,
TButton, or TSpeedButton). Our
3-D Label is almost identical to a
TLabel, so the answer is yes.

2a. “Un-Publish” any properties
or methods? If there’s a similar
component to derive the new
component from, then are there
any properties or methods that
you don’t want to include? If so,
descend from the custom class of
that component that doesn’t
publish any properties or meth-

ds, and publish only those items
at you wish to surface. As a
reminder, the custom classes are listed in Figure 3. If the properties
and methods of the named class are adequate, then use the class
itself to derive the new component.

There are a couple of properties that we don’t want (since they’re
outside the scope of this month’s article). We’ll use TCustomLabel
as our ancestor class.

2b. Any custom painting? In other words, will you use part of the
existing Paint method, or re-write most or all of the visual portion
of the component? This question asks you to consider the compo-
nent’s appearance. Again, if the component is a button and you
want it to look like a regular Windows button, then don’t change
the Paint method. On the other hand, to get a unique looking
component you’ll probably have to write a new Paint method.

This doesn’t really apply to our 3-D Label. Although we’ll re-write
some of the Paint method of a TLabel, we’re not creating anything
completely new. The 3-D Label has the same kind of functionality
as the TLabel. It just changes the Paint method slightly.

3a. Need a Windows handle? Does Windows need to know
about this component? Is it a Windows control that can receive
input focus and needs a handle that it can pass to API functions?
These questions are usually tough for new component builders
for two reasons.

First, they aren’t sure if the control is going to have direct interac-
tion with Windows. Second, they don’t know what a Windows
handle can do for them. To decide if the control is a “gadget”, ask
yourself if this control is a major portion of the application or
something that adds flavor. To understand what a Windows handle
can accomplish, you’re better off reading a Windows API reference.
(Delphi ships with on-line Windows API help for quick reference.)

This doesn’t apply to our 3-D Label component. Our compo-
nent is more of an addition — it makes our applications more
visually appealing. As for the button-like functionality men-
tioned earlier, it doesn’t require a Windows handle. Speed but-
tons are descended from TGraphicControl and don’t have a han-
dle or receive input. Also, since TGraphicControl descendants are
drawn on their parent’s surface and don’t have a Windows han-
dle, they’re easier on Windows resources.

3b. Is it a visual control? Is this something that will be visible at
run-time? If it’s a visual control without custom painting, then
you may have made a mistake and there’s most likely a VCL
component that is similar. Go back and take a look.

Our control is definitely visual. This question doesn’t apply to
the 3-D Label component because we already know it descends
from TCustomLabel.

4a./4b. Paint from scratch? If you’re painting everything from
scratch — meaning you’re creating a graphic or “gadget” compo-
nent and need a Windows handle, then use TCustomControl.
However, if you don’t need a Windows handle, use
TGraphicControl. Lastly, if you’re not painting from scratch —
regardless of whether it needs a Windows handle — you should
again look at one of the existing classes for an ancestor because
you may have overlooked something. The 3-D Label doesn’t
require any of these modifications.

4c. Need streaming? Will you place the new component on the
Component Palette, and drag-and-drop it onto the form at
design time? Or will it be used in code like TIniFile or
TPrinter? Streaming gives a component the ability to store its
state to a form or binary file. This is the lowest common
denominator for using the component as a visual design tool. If
you want to drag-and-drop the new component, then you need
to use TComponent as the ancestor class and do some streaming.
If not, then TObject, TList, or TString might be the correct
ancestor class. Our new label will have built-in streaming.

After filtering our 3-D Label through this tree, we have deter-
mined that TCustomLabel should be its ancestor class. It has
all the functionality we want to either publish or override,
and it doesn’t publish anything of its own. We also have a
name, TLabel3D. We can’t use T3DLabel because when we
create an instance of a variable, it cannot start with a number
for the name. An instance of T3DLabel would become
3DLabel1.

Before creating the class declaration for TLabel3D, we need to
know exactly what the class definition will include. Object-ori-
ented programming demands planning before coding.
Property Considerations
While discussing ways of implementing the new component,
we uncovered the LabelStyle and AsButton properties. Before
completing their class definitions, we’ll need to account for
any special considerations. Luckily, AsButton is pretty straight-
forward. It should hold a True or False value so it’s a variable
of type Boolean.
Delphi INFORMANT ▲ 35

From the Palette

TLabel3D = class(TCustomLabel)
private

FOffset: integer;
FLabelStyle: TLabelStyle;
FAsButton: Boolean;
procedure SetOffset(Value: Integer);
procedure SetLabelStyle(Value: TLabelStyle);
procedure SetAsButton(Value: Boolean);

protected
procedure Paint; override;
procedure MouseDown(Button: TMouseButton;

Shift: TShiftState;
X, Y: Integer); override;

procedure MouseMove(Shift: TShiftState;
X, Y: Integer); override;

procedure MouseUp(Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer); override;

public
property Offset: Integer read FOffset

write SetOffset default 1;
constructor Create(AOwner: TComponent); override;

published
property Align;
property Alignment;
property AsButton: Boolean read FAsButton

write SetAsButton;
property AutoSize;
property Caption;
property Enabled;
property FocusControl;
property Font;
property LabelStyle: TLabelStyle read FLabelStyle

write SetLabelStyle;
However, LabelStyle is a bit more involved. We could call the
property Raised (or Lowered for that matter), and give it a True or
False value to determine its state based on the property name. For
example, if the property is called Raised and the value is True, then
Label3D would be raised. If the value is False it would be lowered.

Unfortunately, that’s not descriptive enough for us. Remember,
we are trying to simplify the whole 3-D process — not make it
more cryptic. If we use an Enumerated type we can have almost
any property values we want. In this case we want the values to
be Raised and Lowered, or more specifically for our property of
LabelStyle, lsRaised and lsLowered. The lowercase ls (LS) repre-
sents a property value of LabelStyle).

This requires us to have an additional type declaration in the
unit that contains the code for TLabel3D (or at least in a unit
used by TLabel3D). For example:

type
TLabelStyle = (lsRaised, lsLowered);

Along with most of the traditional TLabel properties in the pub-
lished section of our class definition, these are the only proper-
ties we want to include right now. There are a few properties we
won’t be using — for simplification purposes and because some
properties would require additional coding. (Again, this is
beyond the scope of this article.)
(white and black). This can be changed to define the amount of
“depth” of the 3-D effect.

Figure 4: The TLabel3D component’s class declaration.

property ShowAccelChar;
property ShowHint;
property Visible;
property WordWrap;
property OnClick;
property OnDblClick;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;

end;
Event Handler Considerations
There really aren’t any considerations here for TLabel3D because
we aren’t going to create any event handlers. However, we are
going to surface a few of the inherited event handlers from the
ancestor classes. (Notice the word classes here.)

We can surface any protected or public property or event han-
dler (which is essentially treated as a property) from any of the
ancestor classes — provided it hasn’t been overridden by a closer
ancestor class. This is a very useful way of hiding implementa-
tion details throughout your class hierarchy.
defaulted to the first (0) value.
The Code
Figure 4 shows the code for the TLabel3D class. Where did the “F”
variables in the private section of the class came from? And why are
the SetOffset, SetLabelStyle, and SetAsButton procedures in there?

The F variables are the fields of the property. They are the private
storage place for the information stored in the property. They are
usually denoted by an “F” preceding the variable name. The prop-
erty declarations are the interface to the values. This technique
allows you to hide the implementation of the properties and allows
you to control access, through those Set... procedures, to the actual
data via the read and write definitions (the accessor methods).

We also added a property to the public section of the class —
the Offset property — and its corresponding field variable and
accessor methods. Offset will be used as a run-time only property
that governs the position offset for the two background colors
JUNE 1995
The property declarations not followed by accessor methods
are the properties we’re surfacing from the ancestor class —
that’s all we have to do to surface those. Now let’s write the
code for the methods.
TLabel3D.Create
You usually override the Create method of your component, and
the first line almost always calls the inherited Create method (see
Figure 5). We also set all properties that are declared with the
default keyword in the property declaration.

The default keyword only tells the Object Inspector what to
display as the default selection. You must still set the property
in the constructor. Properties of ordinal values, such as
AsButton (Boolean: 0 = False or 1 = True) and LabelStyle
(TLabelStyle: 0 = lsRaised or 1 = lsLowered), are internally
Delphi INFORMANT ▲ 36

constructor TLabel3D.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { Call TCustomLabel's Create }
FOffset := 1; { FOffset matches default }
Transparent := True; { Transparent must be True }
with Font do { Set up default font }

begin
Name := 'Arial';
Size := 12;
Color := clBlue;
Style := [fsBold];

end;
end;

Figure 5: Overriding the TComponent’s Create method to create
the constructor for our custom component.

From the Palette
TLabel3D.Paint
The TLabel3D.Paint method is the most time consuming to
produce (see Listing Three). First set fonts, colors, and brush
styles. Then, define a rectangle that is offset by the Offset prop-
erty for the first (white) background text. Call the API proce-
dure DrawText to place the text in the client area of the compo-
nent. Repeat these steps for the second (black) background text.

After painting the background text, reset the Font.Color property
to the regular color and call the inherited paint method of
TCustomLabel. (Fortunately we don’t have to offset the position.)

The raised and lowered effect is governed by the value of the Offset
property. The Offset property uses a negative number to achieve a
lowered style and a positive number for the raised style. We can
modify the Offset value by changing the LabelStyle property.
Jim Allen is an engineer in Borland’s Technical Support Department. He supports
object-oriented programming, and applications development for Borland’s Delphi and
Pascal. Jim also monitors the Delphi forum sections for Component Design and VBXes.
If you have any comments, suggestions, or questions he can be reached on
CompuServe at 70007,4655 or Internet at jallen@wpo.borland.com.

Steve Teixeira is a Senior Engineer at Borland International Technical Support. He
writes for several industry periodicals, and he is the co-author of Delphi Developer’s
Guide from SAMS publishing. You can reach him on CompuServe at 74431,263 or on
Internet at steixeira@wpo.borland.com.
Accessor Methods
The Set... accessor methods do more than just set field values.
This is one reason for using them instead of accessing the field
directly from the property. For example:

property LabelStyle: TLabelStyle read FLabelStyle
write FLabelStyle;

The SetLabelStyle method also toggles the Offset property
between positive and negative, as discussed earlier, and changes
AsButton. Also the SetAsButton method changes the LabelStyle to
lsRaised when AsButton is set to True, as shown in Listing Three.

The SetOffset method:

procedure TLabel3D.SetOffset(Value: Integer);
begin

if FOffset <> Value then
begin

FOffset := Value;
Invalidate;

end;
end;

invalidates the component, forcing Windows to repaint the
object. This is the only place that the Invalidate method is
called directly because any other change that might cause the
component to need repainting calls (or calls something that
calls) the SetOffset method.
JUNE 1995
The Button Stuff
The methods that give TLabel3D its “button” functionality are
as straightforward as the others. Each verifies that the compo-
nent is set as a button (i.e. that AsButton is set to True) and takes
the appropriate action based on the method. If the component
isn’t a button, each calls the inherited method. The MouseDown
method sets the LabelStyle property to lsLowered, as shown in
Listing Three.

MouseMove changes the LabelStyle property if the mouse cursor
is moved off or onto the client area of the component while the
mouse button is still being pressed. This is the same functionali-
ty that most buttons have. The MouseUp method assigns lsRaised
to the LabelStyle. (The code for MouseMove and MouseUp is also
shown in Listing Three.)
The Icon
All that’s left for us to do is create the icon that will represent
our custom component on the Component Palette. Open the
Image Editor by selecting Tools | Image Editor. Then choose
File | New. At the New Project dialog box select Component
Resource (DCR). You’ll want to make the image 20x20.

Considering the diversity of users, try to use only 16 colors. More
importantly, the image needs to have the same name as the class
definition. Also, the name for the .DCR file must be same as the
unit. For example, the image should be Label3D.DCR and the file
should be Label3D.PAS. Store the file in the same directory as the
component unit. When you compile the TLabel3D component it
will now have an icon on the Component Palette (see Figure 1).
Enjoy
The TLabel3D component, while not spectacular, involves most
of the concepts needed to become proficient at component
design. In our next article, we’ll take another look at the
TLabel3D component and continue our trek into the world of
Delphi component design. ∆

The custom 3-D component referenced in this article is available
on the 1995 Delphi Informant Works CD located in
INFORM\95\JUN\JA9506.
Delphi INFORMANT ▲ 37

From the Palette
Begin Listing Three — Label3D.PAS

unit Label3d;

interface

uses
SysUtils, WinTypes, WinProcs, Controls,
StdCtrls, Classes, Graphics, Menus;

type
TLabelStyle = (lsRaised, lsLowered);

TLabel3D = class(TCustomLabel)
private

FOffset: integer;
FLabelStyle: TLabelStyle;
FAsButton: Boolean;
procedure SetOffset(Value: Integer);
procedure SetLabelStyle(Value: TLabelStyle);
procedure SetAsButton(Value: Boolean);

protected
procedure Paint; override;
procedure MouseDown(Button: TMouseButton;

Shift: TShiftState;
X, Y: Integer); override;

procedure MouseMove(Shift: TShiftState;
X, Y: Integer); override;

procedure MouseUp(Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer); override;

public
constructor Create(AOwner: TComponent); override;

published
property Offset: Integer read FOffset

write SetOffset default 1;
property Align;
property Alignment;
property AsButton: Boolean read FAsButton

write SetAsButton;
property AutoSize;
property Caption;
property Enabled;
property FocusControl;
property Font;
property LabelStyle: TLabelStyle read FLabelStyle

write SetLabelStyle;
property ShowAccelChar;
property ShowHint;
property Visible;
property WordWrap;
property OnClick;
property OnDblClick;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;

end;

procedure Register;

implementation

constructor TLabel3D.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { Call TCustomLabel's Create }
FOffset := 1; { FOffset matches property default }
Transparent := True; { Transparent must be True }
with Font do begin { Set up default font }

Name := 'Arial';
Size := 12;
Color := clBlue;
Style := [fsBold];

end;
end;
JUNE 1995
procedure TLabel3D.Paint;
const

{ Array that encapsulates some of
WinProcs.DrawText's flags }

Alignments: array[TAlignment] of Word =
(DT_LEFT, DT_RIGHT, DT_CENTER);

var
TempRect: TRect;
Text: array[0..255] of Char;
OldColor: TColor;

begin
Canvas.Brush.Style := bsClear; { Set clear background }
Canvas.Font := Self.Font; { Insure Canvas Font is set }
OldColor := Font.Color; { Save font's color }
Canvas.Font.Color := clWhite; { Make font white }
{ Create a rect that is offset for the top bevel }
TempRect := Rect(ClientRect.Left - Offset,

ClientRect.Top - Offset,
ClientRect.Right - Offset,
ClientRect.Bottom - Offset);

GetTextBuf(Text, SizeOf(Text)); { Get Label's Caption }
{ Draw offset text }
DrawText(Canvas.Handle, Text, StrLen(Text),

TempRect, DT_EXPANDTABS or
DT_WORDBREAK or Alignments[Alignment]);

Canvas.Font.Color := clBlack; { Make font white }
{ Create rect that is offset for the bottom bevel }
TempRect := Rect(ClientRect.Left + Offset,

ClientRect.Top + Offset,
ClientRect.Right + Offset,
ClientRect.Bottom + Offset);

{ Draw the offset text }
DrawText(Canvas.Handle, Text, StrLen(Text),

TempRect, DT_EXPANDTABS or
DT_WORDBREAK or Alignments[Alignment]);

Canvas.Font.Color := OldColor;{ Restore the old color }
inherited Paint; { Call inherited Paint }

end;

procedure TLabel3D.SetOffset(Value: Integer);
begin

if FOffset <> Value then
begin

FOffset := Value;
Invalidate;

end;
end;

procedure TLabel3D.SetLabelStyle(Value: TLabelStyle);
begin

if FLabelStyle <> Value then
begin

{ Set AsButton property to False if it is True,
and we’re in design mode }

if FAsButton and
(csDesigning in ComponentState) then

SetAsButton(False);
SetOffset(FOffset * -1); { Set FOffset field }
FLabelStyle := Value;

end;
end;

procedure TLabel3D.SetAsButton(Value: Boolean);
begin

if FAsButton <> Value then
begin

if Value then
{ If label isn't already raised... }
if LabelStyle <> lsRaised then

begin
SetLabelStyle(lsRaised); { raise it }

end;

FAsButton := Value;
Delphi INFORMANT ▲ 38

From the Palette
end;
end;

procedure TLabel3D.MouseDown(Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);

begin
if AsButton then

begin
{ if it's a left mouse button and

the label isn't lowered... }
if (Button = mbLeft) and

(LabelStyle <> lsLowered) and
Enabled then

SetLabelStyle(lsLowered);{ Set Style to Lowered }
end

else
inherited MouseDown(Button, Shift, X, Y);

end;

procedure TLabel3D.MouseMove(Shift: TShiftState;
X, Y: Integer);

var
NewState: TLabelStyle;

begin
if AsButton then

begin
{ If it's a left mouse button... }
if Shift = [ssLeft] then

begin
{ Cursor is within Label's client area... }
if (X >= 0) and

(X < ClientWidth) and
(Y >= 0) and
(Y <= ClientHeight) then

NewState := lsLowered { make it Lowered }
else

NewState := lsRaised; { otherwise, Raised }
if NewState <> FLabelStyle then

SetLabelStyle(NewState);
end;

end
else

inherited MouseMove(Shift, X, Y);
end;

procedure TLabel3D.MouseUp(Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);

begin
if FAsButton then

begin
{ The cursor is within Label's client area... }
if (X >= 0) and

(X < ClientWidth) and
(Y >= 0) and
(Y <= ClientHeight) then

SetLabelStyle(lsRaised); { make it Raised }
end

else
inherited MouseUp(Button, Shift, X, Y);

end;

procedure Register;
begin

RegisterComponents('Test', [TLabel3D]);
end;

end.

End Listing Three
JUNE 1995 Delphi INFORMANT ▲ 39

At Your Fingertips
B Y D A V I D R I P P Y

Delphi / Object Pascal

I f your rate of learning is slower than the rate of change, you are falling behind . . .

— Jason B. Jones, Rocket Scientist
How can I create an incremental search field
for a DBGrid component?
This tip is a perfect example of what little code it takes to per-
form a significant programming task in Delphi. The form in
Figure 1 shows a DBGrid component and an Edit component
labeled Search. The Edit component allows the user to advance
to a specific customer name quickly — as opposed to scrolling
through the records in the customer table.
JUNE 1995

Figure 1 (Top): The record indicator automati-
cally advances to the closest match on the
DBGrid. Figure 2 (Bottom): Attach this code to
the Edit component’s OnChange event.

Figure 3: Conflicting color palettes can be
pretty ugly!
For example, to
advance to the
name “Smith”, the
user begins typing
Smith. The appli-
cation will advance
to the record
whose name most
closely matches
what the user is
entering. When
the user enters “S”
the DBGrid will
advance to the first
record with a name
beginning with
“S”, then “Sm”,
“Smi”, and so on.

Using the amazing
FindNearest
method, only one
line of code is
required to create
an incremental
search field! Just
add the Object Pascal code shown in Figure 2 to the OnChange
event of the Edit component. — D.R.
Why do the colors of my graphic images look wrong
when I place them on a form?

Have you ever placed
a graphic on a form,
only to find it horri-
bly discolored like
the one shown in
Figure 3? The prob-
lem is in the palette.
Every Windows
bitmap has a color
palette associated
with it that defines
the set of colors for
the picture. This
holds true for the

small bitmaps that are used as the glyphs on BitBtn components.

The problem occurs whenever you place two or more bitmaps
(including BitBtn components) with different color palettes on the
form at the same time. Windows is forced to choose one of the
color palettes at the expense of the other. This results in one of the
pictures looking perfect, while the other looks like bad 60’s art.

To prevent this, you should use the standard Windows color palette
whenever possible. While it may not be the perfect palette for every
picture, it will provide you with an acceptable standard palette to
use within your application. By using the standard Windows color
palette, you can place as many pictures and icons on a form as you
need without the graphic images becoming distorted.

Figure 3 shows a form containing a graphic of the moon, and
one BitBtn component containing a small graphic of a door. The
glyph of the door is the culprit. It was originally clipped from
another application using a non-standard color palette. Windows
looked at the two graphics and decided to use the BitBtn com-
ponent’s color palette at the expense of the Earth and its moon.
Delphi INFORMANT ▲ 40

JUNE 1995

Figure 4: That’s better! Here both pictures
use the standard Windows color palette.

Figure 6:
Set the Visible

property to
False and the
Price column
will magically

disappear!

At Your Fingertips
To remedy this
problem, edit the
door graphic in your
favorite paint pro-
gram that allows
you to change color
palettes (I use
PaintShop Pro).
Select the option to
change the picture’s
palette to the stan-
dard Windows
palette, and save the
new version of the image. Now, when you reload the modified
image into the BitBtn component’s glyph, the two graphics on
the form should co-exist peacefully, as shown in Figure 4.
— Tony Goodman, Ensemble Corporation
How can I prevent certain columns
from displaying in my DBGrid?
There are a few steps to take before you can remove a column
from a DBGrid component. Our example form in Figure 5
shows a DBGrid with two columns, Item and Price. If we want
to remove the Price field, we must first access the Fields editor by
double-clicking on the Table object (see Figure 5). Next, press
the Add button to define which fields from the Magic table we
want to have access to in our application. Since we want to mod-
ify the Visible property of the Price field, select it from the list.

Now that we have selected the fields from the Magic table, they
appear as objects that can be accessed from the Object Inspector
Figure 5:
Double-click-
ing on a
Table compo-
nent invokes
the Fields
editor.
(see Figure 6). The form is now “aware” of the fields as objects
that can be manipulated individually, and gives us many addition-
al properties that we can change at design-time and run-time.

Select the object named Table1Price from the Object Inspector. You
will notice many properties that can be changed including the font,
size, color, etc. We’re interested in the Visible property near the bot-
tom of the list. Change its value to False, and the Price column will
be removed from the DBGrid, as shown in Figure 6. — D.R.
David Rippy is a Senior Consultant with Ens
specializing in the design and deployment
applications. He has contributed to several
Que, and is a contributing writer to Parado
be reached on CompuServe at 74444,415.

Figure 7: A simple form and its
.DFM file.
How can I document the
objects and their attributes
that I’ve placed on a form?
Soon there will be many
third-party tools to help docu-
ment forms. Until then, you
can explore the .DFM file that
is created when you compile
your form. Every form has a
.DFM file associated with it
to define the objects that are
placed on the form, as well as
many of the object’s key
attributes such as location,
size, color, and caption.
Delphi uses the .DFM file to
create the form at run-time.
The source code attached to
these objects is, of course,
stored in the .PAS files that
you edit when creating event
handlers for the form.
e
o
b
x

To view a .DFM file, select File |
Open File from the main menu.
Next, choose Form file (*.DFM)
from the List Files of Type drop-down list. Figure 7 shows a simplis-
tic form and its corresponding .DFM file. Notice the object defini-
tion for both the form and button in the .DFM listing.

Hopefully you’ll never need to recreate a lost or deleted form
from scratch, but if you do, you can refer to the form’s .DFM file
to get a head start on the objects you need. ∆
— Mike Leftwich, Ensemble Corporation

The demonstration forms referenced in this article are available
on the 1995 Delphi Informant Works CD located in
INFORM\95\JUN\DR9506.
Delphi INFORMANT ▲ 41

mble Corporation,
f client/server database
ooks published by
 Informant. David can

New & Used
B Y G A R Y E N T S M I N G E R

Conversion Assistant
EarthTrek’s Visual Basic-to-Delphi Conversion Tool
I f you’ve developed a lot of great code in one
language and then switch to another, nothing
makes you lighter than an appropriate lan-

guage translator. Since much of my code library is
in Visual Basic (VB), and much of my current coding
is in Object Pascal (the underlying language of
Delphi), I was delighted to hear about EarthTrek’s
Visual Basic-to-Delphi conversion tool —
Conversion Assistant.

The Conversion Assistant translates all the Visual Basic form
(.FRM) and code (.BAS) files in a VB project to Delphi forms
(.DFM) and code (.PAS) files. It then generates a corresponding
Delphi project (.DPR) file from the VB project (.MAK) file.

While the Conversion Assistant isn’t perfect, it does give you a
good start toward translating your VB code. In this review, we’ll
walk through a project that includes some of the basic elements
and components in a typical project. We’ll look at the original
VB code, the Conversion Assistant’s translated code, and the
code needed to make the application compile and work correct-
JUNE 1995

Figure 1: The sample VB form,
LoopTst, in VB design mode.
ly in Delphi. We’ll also discuss
the specific changes made to
duplicate the behavior of the
original VB application.
The Interface
Figure 1 shows the VB test
project CALOOP.MAK. It
consists of a form that has a
text box, label, and five com-
mand buttons. Note that two
of the command buttons are
part of a control array.
A control array is a group of controls of the same type (for exam-
ple, all command buttons or text boxes) that share a control
name and set of event procedures. Each control in the array has
a unique index that allows manipulation of individual controls. I
use control arrays frequently in VB, and they’re another good
test of the Conversion Assistant’s interface translation capability.
A Prerequisite
If you’re using VB 3.0, you must save VB files “As Text” not
“Binary” before you try to convert them. Otherwise, the
Conversion Assistant will flash an error message.

A typical conversion produces a Delphi .PRJ file, several Delphi
form .DFM files, and several Delphi .PAS code files. Some con-
versions create a Delphi GLOBS code file, a consolidation of all
the VB global .BAS code files.
Testing 1, 2, 3
The first procedure, Loop1, creates a two-dimensional array. It
then uses a nested For loop to assign values to each cell in the
array. Finally, it uses a message box to report the results. Here is
the code for the nested For loop:

Sub Loop1 ()
Dim I As Integer
Dim J As Integer
Static TestArray(10, 10)
For I = 1 To 10

For J = 1 To 10
TestArray(I, J) = I

Next J
Next I
MsgBox "Test Array 10x10 filled."

End Sub

After you save your VB code as text, run the Conversion
Assistant and open the VB .MAK file for the project to convert.
Figure 2 shows the Conversion Assistant’s user interface.
Delphi INFORMANT ▲ 42

JUNE 1995

Figure 2: The Conversion Assistant’s
user interface.

New & Used
The Conversion Assistant is
easy to use. It’s menu-driven
with a few options. From
within the Conversion
Assistant, you can view each
file after it’s converted or wait
until the end of the process.

You can also view a .LOG
file that reports messages
and the status of converted
files. If the Conversion
Assistant doesn’t recognize a file in the project (for example, if
it tries to convert a VB file that’s still in binary form), it dis-
plays an error message.

After you open a VB project, you convert it. Figure 3 shows the
Conversion Assistant during the conversion of Loop 2.
This segment of the resulting code:
Figure 3: The
Conversion
Assistant
Viewer during
a conversion.

Figure 4: The Conversion Assistant’s translation of the Loop2

procedure TForm1.Loop2;
var

Dice1: integer;
Flag: integer;

begin
Randomize;
Text1.Text := 'Tossing';
Flag := 77;
while Flag = 77;

Dice1 := Int(6 * Rnd + 1);
if Dice1 < 6 then

begin
Text1.Text := Text1.Text + VBstr(Dice1);

end
else

begin
Text1.Text :=

Text1.Text+VBstr(Dice1)+' i.iBingo.';
Flag := 1;

end;
Wend;

end;
procedure TForm1.Loop1;
var
I: integer;
J: integer;

begin
Static TestArray(10, 10);
for I := 1 to 10 do

begin
for J := 1 To 10 do

begin
TestArray(I, J) := I;

end;
end;

MsgBox 'Test Array 10x10 filled.';
end;

shows that the Conversion Assistant had some problems with
the translation (indicated here in red). The smaller problem is
that it didn’t translate MsgBox. Fortunately, this is an easy fix.
Each time you encounter MsgBox substitute with
ShowMessage.

A bigger problem was caused by Conversion Assistant’s inability
to handle the array properly. Almost everything after the VB
keyword, Static, is mush. However, this problem is fixable as
well. Here’s the corrected Object Pascal code:
procedure TForm1.Loop1;
var

I : integer;
J : integer;
TestArray : array[1..10, 1..10] of integer;

begin
for I := 1 to 10 do

for J := 1 to 10 do
TestArray[I, J] := I;
ShowMessage('Test Array 10x10 filled.');

end;
Loop2
The second procedure — Loop2 — uses a While loop, an If
statement, the built-in VB Randomize procedure, and a Rnd
function. Loop2 writes to a control’s (Text1) text property.
Here’s the VB code:

Sub Loop2 ()
Dim Dice1 As Integer
Dim Flag As Integer
Randomize
Text1.Text = "Tossing"
Flag = 77
While Flag = 77

Dice1 = Int(6 * Rnd + 1)
If Dice1 < 6 Then

Text1.Text = Text1.Text & Str(Dice1)
Else

Text1.Text = Text1.Text & Str(Dice1) & " !Bingo!"
Flag = 1

End If
Wend

End Sub

The Conversion Assistant’s translation is shown in Figure 4 with
the problem areas highlighted in red.

The Conversion Assistant had two small problems with this
code: it mishandled the Rnd function, and it didn’t know what
to do with the keyword, Wend. Again these are easy to fix, as
shown in Figure 5.
Delphi INFORMANT ▲ 43

procedure.

Figure 5: The corrected Object Pascal version of Loop2.

Figure 6 (Top): Conversion Assistant’s translation of the CaseTest
procedure. Figure 7 (Bottom): Corrected Object Pascal version of
the CaseTest procedure.

procedure TForm1.Loop2;
var

Dice1: integer;
Flag: integer;
Num: integer;
DiceStr : string;

begin
Randomize;
Memo1.Text := 'Tossing';
Flag := 77;
while Flag = 77 do

begin
Dice1 := Random(6 + 1);
if Dice1 < 6 then

begin
Str(Dice1,DiceStr);
Memo1.Text := Memo1.Text + DiceStr;

end;
else

begin
Str(Dice1,DiceStr);
Memo1.Text := Memo1.Text+DiceStr+' !Bingo!';
Flag := 1;

end;
end;

end;

procedure TForm1.CaseTest;
var

NumToTest: integer;
Msg: string;
Title: string;

begin
()
Msg := 'Enter a value between 1 and 10.';
Title := 'CaseTest';
Do;

NumToTest := InputBox(Msg, Title, '1');
Loop Until NumToTest >= 1 And NumToTest <= 10;
MsgBox 'You entered ' + NumToTest { Display message.};
case NumToTest of

1: begin;
end;
2: begin;
end;
end; { c a s e }

MsgBox Msg;
end;

procedure TForm1.CaseTest;
var

NumToTest: integer;
StrNum : string;
Msg: string;
Title: string;
Code: integer;

begin
Msg := 'Enter a value between 1 and 10.';
Title := 'CaseTest';

repeat
StrNum := InputBox(Msg, Title, '1');
Val(StrNum,NumToTest,Code);

until (NumToTest >= 1) and (NumTotest <= 10);
ShowMessage('You entered ' + StrNum);
case NumToTest of

1, 3, 5, 7, 9 : Msg := 'odd number';
2, 4, 6, 8, 10 : Msg := 'even number';

end; {c a s e}

ShowMessage(Msg);

end;

New & Used
CaseTest
The CaseTest procedure uses a Do loop, a Select Case state-
ment, two comparison operators, an InputBox, and a MsgBox.
Here’s the VB code for CaseTest:

Sub CaseTest ()
Dim NumToTest As Integer
Dim Msg As String
Dim Title As String

Msg = "Enter a value between 1 and 10."
Title = "CaseTest"
Do

NumToTest = InputBox(Msg, Title, "1")
Loop Until NumToTest >= 1 And NumToTest <= 10
MsgBox "You entered " & NumToTest ' Display message.
Select Case NumToTest

Case 1, 3, 5, 7, 9: Msg = "odd number"
Case 2, 4, 6, 8, 10: Msg = "even number"
End Select
MsgBox Msg

End Sub

The Object Pascal code produced by Conversion Assistant is
shown in Figure 6.

This procedure gave the Conversion Assistant more trouble. It
wasn’t sure how to handle the Do loop or the Select Case state-
ment. It also has InputBox return an integer, although Delphi
requires a string. This translation also has the same problem
with MsgBox that we saw earlier.

Figure 7 shows the corrected Delphi code with the Val proce-
dure added to translate the returned value of InputBox.
JUNE 1995
Control Array Test
The VB Command4_Click event procedure handles the control
array test. It uses an If test to test the Index value of each con-
trol array item. It then modifies the Caption property of the
label depending on the result. The VB control array test proce-
dure looks like this:

Sub Command4_Click (Index As Integer)
If Index = 0 Then

Label1.Caption = "Control array 0 pressed."
Else

Label1.Caption = "Control array 1 pressed."
End If

End Sub
Delphi INFORMANT ▲ 44

New & Used
Here’s the Object Pascal translation generated by Conversion
Assistant:

procedure TForm1.Command4_Click(Sender: TObject);
begin

if VBIndex(Sender) = 0 then
begin

Label1.Caption := 'Control array 0 pressed.';
end;

else
begin

Label1.Caption := 'Control array 1 pressed.';
end;

end;

As you can see, the Conversion Assistant had no trouble han-
dling this event procedure.

And that’s it! Figure 8 shows the translated and corrected Delphi
application at run-time.
Gary Entsminger is the author of The Tao of Objects, an
Introduction to Object-oriented Programming, 2nd ed. (M&T
1995) and Secrets of the Visual Basic Masters, 2nd ed. (Sams,
1994). He is currently working on The Way of Delphi, an
advanced Delphi book for Prentice Hall, and is the technical editor
for Delphi Informant.

Figure 8: The translated and corrected Delphi application at run-
time.

The Conversion Assistant
The Conversion Assistant con-
verts Visual Basic project, code,
and form files into equivalent
files that can be read, modi-
fied, and executed in Borland’s
Delphi. It maintains references
to VBX controls and has a com-
piler’s syntax checking capabil-
ity. Version 1.0 represents a
good start on a great idea.

EarthTrek
79 Montvale Ave. #5
Woburn, MA 01801
Phone: (617) 273-0308
Fax: (617) 270-4437
Price: US$79
The Bottom Line
Besides these tests, I translated several other VB applications
to Delphi using the Conversion Assistant. In general, most
application interfaces translated correctly or needed only
small modifications.

The Conversion Assistant translated menus well and most
code that contained Windows API functions. It also handles
control arrays well.

However, Conversion Assistant did inappropriately translate a
few interface object property values. For example, it translated a
VB multi-line text box into a Delphi Edit component, not a
Memo component (the Delphi equivalent of a multi-line text
box). A snappier Conversion Assistant might check the VB
textbox multi-line property, and seeing it set to True, create a
Delphi Memo component.
JUNE 1995
Variable conversion is an issue as well. In VB, you can use a variable
without declaring it, the variable then being variant by default.

You can also dimension variables by using suffixes (AnInt% for
example). And you can declare several variables in the same line
using commas (e.g. AnInt, AnotherInt, OneMoreInt As Integer).
The Conversion Assistant had problems with all these scenarios.

In general, keywords in VB that do not have exact matches
(for example, ReDim in VB) are ignored by the Conversion
Assistant. They simply appear as VB code in the translation.
Ignoring unrecognized keywords and identifiers is a reason-
able approach, since this makes it easier to locate code that
needs correcting.

VB dynamic arrays and error handling routines must be hand-
coded after the translation. In these situations, the Conversation
Assistant also retains the VB code.
Conclusion
Conversion Assistant’s on-line help system is incomplete. Also,
when it encounters an error, it doesn’t give you much informa-
tion about the error. Otherwise, the interface is straightforward
and easy-to-use.
Conversion Assistant is based on a
great idea and makes a good start
toward becoming a valuable Visual
Basic-to-Delphi translation tool.
The more I used it, the more I
appreciated what it accomplished.
And with practice I learned how to
more accurately “zero in” on code
that needed modification.

Even with its flaws, the Conversion
Assistant could save you program-
ming time. ∆

The complete Visual Basic code listing
and Delphi code listings (Conversion
Assistant-generated and corrected ver-
sion) for this example conversion pro-
ject are available on the 1995 Delphi
Informant Works CD located in
INFORM\95\JUN\CA9506.
Delphi INFORMANT ▲ 45

TextF i le

D
on’t Be a Dummy, Get This Book

Or is that “Be a dummy! Get
this book?” No, that doesn’t
sound right either. In any case,
despite its title, Neil J.
Rubenking’s Delphi
Programming for Dummies pro-
vides an excellent introduction
to Delphi for dummies or any-
one else. It’s also very well
organized and well written —
in fact it’s a page-turner.

I’ve read four of IDG’s
Dummies titles so far (the
Paradox for Windows, Borland
C++, and dBASE for
Windows books were the oth-
ers). They’re all good, although
the Delphi title is the best of
the bunch. It contains remark-
ably few errors (typos, beta
screen captures, etc.) and man-
ages to pack an amazing
amount of information
between wisecracks into its
376 pages. This is especially
praiseworthy since Delphi
Programming for Dummies
made it to the bookstores very
quickly, and must have been
substantially based on a pre-
release version of Delphi.
Several other early-to-market
Delphi books show signs of
the “rush to press”.

Just to demonstrate that
Dummies isn’t for the simple-
minded, it begins with a
description of Delphi’s compil-
er options, before moving on
to the other pages of the
JUNE 1995
Project Options dialog box. It
then quickly explains Delphi’s
Environment Options, Main
Menu, SpeedBar, and other
aspects of the IDE. These
introductory sections also
describe events, properties,
and component interaction.

The next eight chapters are a
whirlwind tour of the
Component Palette. Each com-
ponent is demonstrated with a
step-by-step programming
example that you build as you
read. You will fall in love with
Delphi (if you haven’t already)
long before you’ve completed
these chapters. In fact,
although I was reading
Dummies to review it, I often
found myself forgetting about
the book and just enjoying
Delphi. You just can’t come
away from this book without
marveling at what a fabulous
tool Borland has produced.
From form design, to drag-and-
drop, to file I/O, Delphi makes
it simple. And Rubenking does
an outstanding job of showing
off Delphi’s capabilities in an
enjoyable way.

The next section, entitled
“Real Programming”, gets
down to the nitty gritty of
Object Pascal programming
(e.g. units, project files, the
interface and implementation
sections, etc.) beginning with
an examination of the code
that Delphi generates by
default for an “empty” form.
Witty and succinct — like the
rest of Dummies — it’s the
best introduction to the ele-
ments of Delphi program-
ming I’ve read.

The next two chapters describe
“Ten Common Mistakes”
including caveats about semi-
colons and PChars; and “Ten
Windows API Functions”
including an application that
displays Windows’ system met-
rics, and a handy applet for
exiting or restarting Windows,
or simply rebooting the com-
puter. In fact, several of the
Dummies tutorials present use-
ful programs. Another that
comes to mind is an INI file
viewer that displays INI files in
outline form. The final two
chapters introduce the Object
Pascal run-time library, and
work with “Five Hidden Delphi
Objects” including the Printer
object. An Appendix explores
using VBXes in Delphi.

Dummies provides a compre-
hensive look at Delphi: the
elements of a Delphi project,
compiler directives, event
handlers, using the is and as
operators, variable declara-
tions, variable scoping, string
manipulation, calling DLL
and Windows API functions,
debugging, and much much
more. In short, you’ll feel
comfortable with the new
tool and be well prepared to
begin your own Delphi devel-
opment project.

In brief, Neil J. Rubenking’s
Delphi Programming for
Dummies is a non-stop romp
through the new develop-
ment environment’s features,
components, and language.
It’s also the best introduction
to Delphi in the bookstores
right now. Oh yeah — it’s
funny too.

— Jerry Coffey

Delphi Programming for
Dummies by Neil J.
Rubenking, IDG Books
Worldwide, 155 Bovet Road,
Suite 310, San Mateo, CA
94402; (800) 762-2974 or
(415) 312-0650.

ISBN: 1-56884-200-7
Price: US$19.99
376 pages
Delphi INFORMANT ▲ 46

TextFile
The Gang of Four Speaks of Patterns

Software jargon changes con-
stantly. Sure, we give new
terms a chance, but we don’t
retain them all. Our brains
can’t hold them. And too
many turn out to be empty
hyperbole. If terms are useful
they will endure. For exam-
ple, some surviving terms
from object-oriented jargon
— encapsulation, inheritance,
and polymorphism — are use-
ful. They help us discuss a
new approach to program-
ming; they are the vocabulary
of the object-oriented arena.

Now scouts are reporting
from the OO frontier, but
they’re spending a long time
in debriefing. Seems to be
some problem understanding
what the heck they’re talking
about! The frontier is Object-
Oriented System Design and
the scouts finally have a way
to tell us what’s “out there”.
They’re called patterns.

In the mid-80s, Kent Beck
read a book by the architect
Christopher Alexander.
Alexander’s books explain
why modern architecture pro-
duces many buildings that
don’t “work”. The “pattern
language” he invented makes
it easier for designers to
understand and create usable
buildings. Patterns clarify
when and why ideas work
and how they reinforce each
other. They also help users
participate in design.

Beck saw many parallels to
software issues, and he and
Ward Cunningham applied
the ideas to a current project.
The results were encouraging,
so Beck and Cunningham pre-
sented software-related pat-
terns to OOPSLA 87 (the
annual object-oriented pro-
JUNE 1995
gramming convention). Since
then, most participants at the
OO conferences have accepted
this Alexandrian Pattern form
as a standard.

The authors of Design
Patterns (published by
Addison-Wesley) are mem-
bers in good standing of the
OO community, and with
this book they have become
almost a cult. They even have
a nickname: the Gang of
Four (or GOF).

Design Patterns shows why
the patterns concept is so
powerful when applied to
OO design. But why do we
need the new term? After all,
it sounds a lot like a data
structure specification, with
perhaps a few ideas and rules
for its application. It’s mainly
a difference of scale. Patterns
can be generic solutions to
large-scale system architec-
ture problems.

Composing an architecture
using patterns can save a good
deal of strategic time, and pro-
vide a sounder architecture.
The cost of getting things
wrong in a system’s architec-
ture is high, so a pattern
includes information to ensure
it’s applied in the correct cases,
and that all alternatives and
consequences are considered.

Design Patterns recommends
that a pattern should contain
four fully elaborated ele-
ments: a carefully selected
name, the preconditions and
indications for considering it,
alternative implementations,
and the pattern’s conse-
quences including the poten-
tial trade-offs. The pattern
community allows a lot of lat-
itude in how you fulfill these
four requirements. In fact, the
GOF authors present their
patterns in far greater detail.

What kind of thing can be a
pattern? Here are names and
intents of two GOF patterns.
1) “Observer” defines a one-
to-many dependency between
objects so that when one
object changes state, all its
dependents are notified and
updated automatically. 2)
“Mediator” defines an object
that encapsulates the interac-
tion of a set of objects. It pro-
motes loose coupling by keep-
ing objects from referring to
each other explicitly, and it lets
you vary their interactions
independently.

These two behavioral patterns
make up about half of the 23
patterns in the book. Other
sections deal with creational
and structural patterns.

And there’s more. An excel-
lent and wise section discuss-
es the realities of OO design
and the common forces with
which your design must con-
tend. The “Designing for
Change” section is full of
useful insights, advice regard-
ing the use of inheritance ver-
sus composition, and how to
select and use a pattern.
There is also a long case
study that uses patterns to
explain the design of a text
editor program.

Each pattern section is preced-
ed by an overview and fol-
lowed by a “compare and con-
trast” summary. Examples
focus on C++ and Smalltalk,
but are just as applicable to
Delphi OO programming.

If you want to know more,
the Internet offers many
excellent papers. Different
styles of patterns are
described, along with general
discussions and bibliogra-
phies. The best starting points
are via WEB: http://st-
www.cs.uiuc.edu/users/pat-
terns/patterns.html, and FTP:
st.cs.uiuc.edu/pub/patterns.

Design Patterns: Elements of
Reusable Object-Oriented
Software by Erich Gamma, et
al., is an important reference
for all who design object-ori-
ented software.

And by demonstrating the
power of good object design, it
will do much to explain and
justify OO technology to
those who remain doubtful or
confused.

— Richard Curzon

Design Patterns: Elements of
Reusable Object-Oriented
Software by Erich Gamma,
Richard Helm, Ralph
Johnson, and John Vlissides,
Addison-Wesley Publishing
Company, One Jacob Way,
Reading, MA 01867;
(800) 822-6339.

ISBN: 0-201-63361-2

Price: US$37.75
416 pages
Delphi INFORMANT ▲ 47

	Table of Contents
	Editorial
	Delphi Tools
	Woll2Woll Software Announces InfoPower 1.0
	InfoSpy 2.3 for Delphi Developers
	HyperAct Ships Pasterp 2.5
	Add Faxing to Delphi Applications

	Newsline
	Delphi World Tour
	Borland Rolls Out Delphi Client/Server Bundle
	Informant Announces CompuServe Forum
	New RAD Pack for Delphi
	Brainstorm Technologies Discloses Plans for Partnership with Borland
	Kahn Sends Open Letter to Lotus and Microsoft
	 Microsoft’s SQL Server 6.0’s Planned Release

	OOP for the Uninitiated
	A Hardware Analogy
	Foundation Concepts of OOP
	Encapsulation
	Encapsulation vs. Structured Programming
	Beyond Strong Data Typing and Scoping
	Sidebar - Defining Some OOP Terms

	Inheritance
	Polymorphism
	Developer Types: Producers and Users
	Sidebar - Debunking Some OOP Myths

	Classes vs. Objects
	Conclusion

	The Triumph of Objects
	Do You Remember When?
	Your First Object
	The Key Is Reusability

	VB to Delphi
	Lay of the Land
	Variables
	Conditional Terminology
	File Functions
	Accessing Other Forms
	Making API Calls
	Accessing Interrupts
	Accessing a DLL
	Adding Controls
	Exception Handling
	GO Delphi
	Conclusion

	Exceptional Handling
	Exception Handling
	The try...except Block
	Setting Up the Exception Handler
	An Exception Handling Component
	Deriving a New Component
	Creating a Property
	OnDo and the Is Operator
	Adding the New Component to the Palette
	Invoking Component Methods
	Conclusion
	Listing One — TExcept.PAS
	Listing Two — Tstexcep.PAS

	The TField Class
	What Are TFields?
	Defining and Selecting TField Components
	Some Selected TField Properties
	TFields without DBGrids
	Conclusion

	A 3-D Label Component
	The Idea
	Checking the Criteria
	Getting Started
	Choosing a Parent Class
	Understanding the Decision Tree
	Property Considerations
	Event Handler Considerations
	The Code
	TLabel3D.Create
	TLabel3D.Paint
	Accessor Methods
	The Button Stuff
	The Icon
	Enjoy
	Listing Three — Label3D.PAS

	At Your Fingertips
	How can I create an incremental search field for a DBGrid component?
	Why do the colors of my graphic images look wrong when I place them on a form?
	How can I prevent certain columns from displaying in my DBGrid?
	How can I document the objects and their attributes that I've placed on a form?

	Conversion Assistant
	The Interface
	A Prerequisite
	Testing 1, 2, 3
	Loop2
	CaseTest
	Control Array Test
	The Bottom Line
	Conclusion

	TextFile
	Don’t Be a Dummy, Get This Book
	The Gang of Four Speaks of Patterns

